Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 5(1): 29-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27923825

RESUMO

Murine syngeneic tumor models are critical to novel immuno-based therapy development, but the molecular and immunologic features of these models are still not clearly defined. The translational relevance of differences between the models is not fully understood, impeding appropriate preclinical model selection for target validation, and ultimately hindering drug development. Across a panel of commonly used murine syngeneic tumor models, we showed variable responsiveness to immunotherapies. We used array comparative genomic hybridization, whole-exome sequencing, exon microarray analysis, and flow cytometry to extensively characterize these models, which revealed striking differences that may underlie these contrasting response profiles. We identified strong differential gene expression in immune-related pathways and changes in immune cell-specific genes that suggested differences in tumor immune infiltrates between models. Further investigation using flow cytometry showed differences in both the composition and magnitude of the tumor immune infiltrates, identifying models that harbor "inflamed" and "non-inflamed" tumor immune infiltrate phenotypes. We also found that immunosuppressive cell types predominated in syngeneic mouse tumor models that did not respond to immune-checkpoint blockade, whereas cytotoxic effector immune cells were enriched in responsive models. A cytotoxic cell-rich tumor immune infiltrate has been correlated with increased efficacy of immunotherapies in the clinic, and these differences could underlie the varying response profiles to immunotherapy between the syngeneic models. This characterization highlighted the importance of extensive profiling and will enable investigators to select appropriate models to interrogate the activity of immunotherapies as well as combinations with targeted therapies in vivo Cancer Immunol Res; 5(1); 29-41. ©2016 AACR.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Sinergismo Farmacológico , Exoma , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Imunomodulação/efeitos dos fármacos , Imunomodulação/genética , Camundongos , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
2.
Proc Natl Acad Sci U S A ; 110(34): 13916-20, 2013 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-23922389

RESUMO

Complement component C1, the complex that initiates the classical pathway of complement activation, is a 790-kDa assembly formed from the target-recognition subcomponent C1q and the modular proteases C1r and C1s. The proteases are elongated tetramers that become more compact when they bind to the collagen-like domains of C1q. Here, we describe a series of structures that reveal how the subcomponents associate to form C1. A complex between C1s and a collagen-like peptide containing the C1r/C1s-binding motif of C1q shows that the collagen binds to a shallow groove via a critical lysine side chain that contacts Ca(2+)-coordinating residues. The data explain the Ca(2+)-dependent binding mechanism, which is conserved in C1r and also in mannan-binding lectin-associated serine proteases, the serine proteases of the lectin pathway activation complexes. In an accompanying structure, C1s forms a compact ring-shaped tetramer featuring a unique head-to-tail interaction at its center that replicates the likely arrangement of C1r/C1s polypeptides in the C1 complex. Additional structures reveal how C1s polypeptides are positioned to enable activation by C1r and interaction with the substrate C4 inside the cage-like assembly formed by the collagenous stems of C1q. Together with previously determined structures of C1r fragments, the results reported here provide a structural basis for understanding the early steps of complement activation via the classical pathway.


Assuntos
Ativação do Complemento/imunologia , Complemento C1/química , Complemento C1q/química , Complemento C1s/química , Imunidade Inata/imunologia , Modelos Moleculares , Conformação Proteica , Animais , Células CHO , Cromatografia de Afinidade , Cromatografia em Gel , Ativação do Complemento/genética , Complemento C1q/metabolismo , Complemento C1s/metabolismo , Cricetinae , Cricetulus , Cristalização , Escherichia coli , Ligação Proteica
4.
Nat Immunol ; 7(6): 634-43, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16699526

RESUMO

Notch1 activation regulates T lineage commitment and early T cell development. Fringe glycosyltransferases alter the sensitivity of Notch receptors to Delta-like versus Jagged Notch ligands, but their functions in T lymphopoiesis have not been defined. Here we show that developmental stage-specific expression of the glycosyltransferase lunatic fringe (Lfng) is required for coordination of the access of T cell progenitors to intrathymic niches that support Notch1-dependent phases of T cell development. Lfng-null progenitors generated few thymocytes in competitive assays, whereas Lfng overexpression converted thymocytes into 'supercompetitors' with enhanced binding of Delta-like ligands and blocked T lymphopoiesis from normal progenitors. We suggest that the ability of Lfng and Notch1 to control progenitor competition for limiting cortical niches is an important mechanism for the homeostatic regulation of thymus size.


Assuntos
Glicosiltransferases/fisiologia , Linfopoese , Receptor Notch1/fisiologia , Linfócitos T/citologia , Timo/crescimento & desenvolvimento , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Linhagem da Célula/genética , Glicosiltransferases/genética , Junções Intercelulares/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Linfopoese/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Receptor Notch1/genética , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/citologia
5.
Semin Immunol ; 15(2): 99-106, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12681946

RESUMO

Recent studies have shown that disruption of Notch1 signaling in lymphocyte progenitors (LP) inhibits T cell development and promotes B cell development in the thymus. Conversely, inappropriate activation of Notch1 in LP inhibits B cell development and causes ectopic T cell development in the bone marrow. These observations imply that Notch1 activation must be spatially regulated to ensure that LP generate B cells in the bone marrow and T cells in the thymus. However, Notch ligands are expressed in both tissues. Studies in flies and worms have revealed that Notch activation is extremely sensitive to small changes in the amount of receptor or ligand expressed, and defined multiple mechanisms that limit Notch activation to discrete cells at specific times during development. Here, we describe how some of these mechanisms might regulate Notch activity in LP during the T/B lineage decision.


Assuntos
Linfócitos B/imunologia , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição , Animais , Linhagem da Célula , Proteínas de Drosophila , Endocitose , Glicosilação , Imunoglobulinas , Hormônios Juvenis/metabolismo , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Receptor Notch1 , Receptores de Superfície Celular/fisiologia , Receptores de Citocinas/agonistas , Receptores de Citocinas/metabolismo , Transdução de Sinais
6.
Nature ; 415(6867): 96-9, 2002 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-11780125

RESUMO

Uncoupling protein 1 (UCP1) diverts energy from ATP synthesis to thermogenesis in the mitochondria of brown adipose tissue by catalysing a regulated leak of protons across the inner membrane. The functions of its homologues, UCP2 and UCP3, in other tissues are debated. UCP2 and UCP3 are present at much lower abundance than UCP1, and the uncoupling with which they are associated is not significantly thermogenic. Mild uncoupling would, however, decrease the mitochondrial production of reactive oxygen species, which are important mediators of oxidative damage. Here we show that superoxide increases mitochondrial proton conductance through effects on UCP1, UCP2 and UCP3. Superoxide-induced uncoupling requires fatty acids and is inhibited by purine nucleotides. It correlates with the tissue expression of UCPs, appears in mitochondria from yeast expressing UCP1, and is absent in skeletal muscle mitochondria from UCP3 knockout mice. Our findings indicate that the interaction of superoxide with UCPs may be a mechanism for decreasing the concentrations of reactive oxygen species inside mitochondria.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Superóxidos/farmacologia , Desacopladores/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas de Transporte/genética , Privação de Alimentos , Deleção de Genes , Glibureto/farmacologia , Temperatura Alta , Membranas Intracelulares/metabolismo , Canais Iônicos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Rim/citologia , Rim/metabolismo , Fígado/citologia , Fígado/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Proteínas/metabolismo , Prótons , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Baço/citologia , Baço/metabolismo , Desacopladores/farmacologia , Proteína Desacopladora 1 , Proteína Desacopladora 2 , Proteína Desacopladora 3
7.
J Biol Chem ; 277(4): 2773-8, 2002 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-11707458

RESUMO

The ability of native uncoupling protein-3 (UCP3) to uncouple mitochondrial oxidative phosphorylation is controversial. We measured the expression level of UCP3 and the proton conductance of skeletal muscle mitochondria isolated from transgenic mice overexpressing human UCP3 (UCP3-tg) and from UCP3 knockout (UCP3-KO) mice. The concentration of UCP3 in UCP3-tg mitochondria was approximately 3 microg/mg protein, approximately 20-fold higher than the wild type value. UCP3-tg mitochondria had increased nonphosphorylating respiration rates, decreased respiratory control, and approximately 4-fold increased proton conductance compared with the wild type. However, this increased uncoupling in UCP3-tg mitochondria was not caused by native function of UCP3 because it was not proportional to the increase in UCP3 concentration and was neither activated by superoxide nor inhibited by GDP. UCP3 was undetectable in mitochondria from UCP3-KO mice. Nevertheless, UCP3-KO mitochondria had unchanged respiration rates, respiratory control ratios, and proton conductance compared with the wild type under a variety of assay conditions. We conclude that uncoupling in UCP3-tg mice is an artifact of transgenic expression, and that UCP3 does not catalyze the basal proton conductance of skeletal muscle mitochondria in the absence of activators such as superoxide.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Prótons , Animais , Western Blotting , Peso Corporal , Humanos , Canais Iônicos , Cinética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Mitocondriais , Oxigênio/metabolismo , Consumo de Oxigênio , Fosforilação , Ligação Proteica , Ácido Succínico/metabolismo , Superóxidos/metabolismo , Proteína Desacopladora 3
8.
Biochem J ; 361(Pt 1): 49-56, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11743882

RESUMO

Western blots detected uncoupling protein 3 (UCP3) in skeletal-muscle mitochondria from wild-type but not UCP3 knock-out mice. Calibration with purified recombinant UCP3 showed that mouse and rat skeletal muscle contained 0.14 microg of UCP3/mg of mitochondrial protein. This very low UCP3 content is 200-700-fold less than the concentration of UCP1 in brown-adipose-tissue mitochondria from warm-adapted hamster (24-84 microg of UCP1/mg of mitochondrial protein). UCP3 was present in brown-adipose-tissue mitochondria from warm-adapted rats but was undetectable in rat heart mitochondria. We expressed human UCP3 in yeast mitochondria at levels similar to, double and 7-fold those found in rodent skeletal-muscle mitochondria. Yeast mitochondria containing UCP3 were more uncoupled than empty-vector controls, particularly at concentrations that were 7-fold physiological. However, uncoupling by UCP3 was not stimulated by the known activators palmitate and superoxide; neither were they inhibited by GDP, suggesting that the observed uncoupling was a property of non-native protein. As a control, UCP1 was expressed in yeast mitochondria at similar concentrations to that of UCP3 and at up to 50% of the physiological level of UCP1. Low levels of UCP1 gave palmitate-dependent and GDP-sensitive proton conductance but higher levels of UCP1 caused an additional GDP-insensitive uncoupling artifact. We conclude that the uncoupling of yeast mitochondria by high levels of UCP3 expression is entirely an artifact and provides no evidence for any native uncoupling activity of the protein.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Sequência de Bases , Proteínas de Transporte/genética , Cricetinae , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Técnicas In Vitro , Corpos de Inclusão/metabolismo , Canais Iônicos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais , Músculo Esquelético/metabolismo , Prótons , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Superóxidos/farmacologia , Proteína Desacopladora 1 , Proteína Desacopladora 3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA