Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1850(2): 307-17, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450184

RESUMO

BACKGROUND: Voltage-gated Na+ channels (Nav) are responsible for the initiation and conduction of neuronal and muscle action potentials. Nav gating can be altered by sialic acids attached to channel N-glycans, typically through isoform-specific electrostatic mechanisms. METHODS: Using two sets of Chinese Hamster Ovary cell lines with varying abilities to glycosylate glycoproteins, we show for the first time that sialic acids attached to O-glycans and N-glycans within the Nav1.4 D1S5-S6 linker modulate Nav gating. RESULTS: All measured steady-state and kinetic parameters were shifted to more depolarized potentials under conditions of essentially no sialylation. When sialylation of only N-glycans or of only O-glycans was prevented, the observed voltage-dependent parameter values were intermediate between those observed under full versus no sialylation. Immunoblot gel shift analyses support the biophysical data. CONCLUSIONS: The data indicate that sialic acids attached to both N- and O-glycans residing within the Nav1.4 D1S5-S6 linker modulate channel gating through electrostatic mechanisms, with the relative contribution of sialic acids attached to N- versus O-glycans on channel gating being similar. GENERAL SIGNIFICANCE: Protein N- and O-glycosylation can modulate ion channel gating simultaneously. These data also suggest that environmental, metabolic, and/or congenital changes in glycosylation that impact sugar substrate levels, could lead, potentially, to changes in Nav sialylation and gating that would modulate AP waveforms and conduction.


Assuntos
Glicoproteínas/metabolismo , Ativação do Canal Iônico/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Ácidos Siálicos/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glicoproteínas/genética , Glicosilação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Ácidos Siálicos/genética
2.
Proc Natl Acad Sci U S A ; 106(38): 16517-22, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19666501

RESUMO

Millions afflicted with Chagas disease and other disorders of aberrant glycosylation suffer symptoms consistent with altered electrical signaling such as arrhythmias, decreased neuronal conduction velocity, and hyporeflexia. Cardiac, neuronal, and muscle electrical signaling is controlled and modulated by changes in voltage-gated ion channel activity that occur through physiological and pathological processes such as development, epilepsy, and cardiomyopathy. Glycans attached to ion channels alter channel activity through isoform-specific mechanisms. Here we show that regulated and aberrant glycosylation modulate cardiac ion channel activity and electrical signaling through a cell-specific mechanism. Data show that nearly half of 239 glycosylation-associated genes (glycogenes) were significantly differentially expressed among neonatal and adult atrial and ventricular myocytes. The N-glycan structures produced among cardiomyocyte types were markedly variable. Thus, the cardiac glycome, defined as the complete set of glycan structures produced in the heart, is remodeled. One glycogene, ST8sia2, a polysialyltransferase, is expressed only in the neonatal atrium. Cardiomyocyte electrical signaling was compared in control and ST8sia2((-/-)) neonatal atrial and ventricular myocytes. Action potential waveforms and gating of less sialylated voltage-gated Na+ channels were altered consistently in ST8sia2((-/-)) atrial myocytes. ST8sia2 expression had no effect on ventricular myocyte excitability. Thus, the regulated (between atrium and ventricle) and aberrant (knockout in the neonatal atrium) expression of a single glycogene was sufficient to modulate cardiomyocyte excitability. A mechanism is described by which cardiac function is controlled and modulated through physiological and pathological processes that involve regulated and aberrant glycosylation.


Assuntos
Glicoproteínas/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Potenciais de Ação , Animais , Animais Recém-Nascidos , Análise por Conglomerados , Eletrofisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/metabolismo , Glicosilação , Coração/crescimento & desenvolvimento , Coração/fisiologia , Camundongos , Camundongos Knockout , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialiltransferases/genética , Sialiltransferases/metabolismo , Sialiltransferases/fisiologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Canais de Sódio/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Pflugers Arch ; 447(6): 908-14, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14677067

RESUMO

Prostate cancer is the second leading cause of cancer deaths in American males, resulting in an estimated 37,000 deaths annually, typically the result of metastatic disease. A consequence of the unsuccessful androgen ablation therapy used initially to treat metastatic disease is the emergence of androgen-insensitive prostate cancer, for which there is currently no prescribed therapy. Here, three related human prostate cancer cell lines that serve as a model for this dominant form of prostate cancer metastasis were studied to determine the correlation between voltage-gated sodium channel expression/function and prostate cancer metastatic (invasive) potential: the non-metastatic, androgen-dependent LNCaP LC cell line and two increasingly tumorogenic, androgen-independent daughter cell lines, C4 and C4-2. Fluorometric in vitro invasion assays indicated that C4 and C4-2 cells are more invasive than LC cells. Immunoblot analysis showed that voltage-gated sodium channel expression increases with the invasive potential of the cell line, and this increased invasive potential can be blocked by treatment with the specific voltage-gated sodium channel inhibitor, tetrodotoxin (TTX). These data indicate that increased voltage-gated sodium channel expression and function are necessary for the increased invasive potential of these human prostate cancer cells. When the human adult skeletal muscle sodium channel Na(v1.4) was expressed transiently in each cell line, there was a highly significant increase in the numbers of invading LC, C4, and C4-2 cells. This increased invasive potential was reduced to control levels by treatment with TTX. These data are the first to indicate that the expression of voltage-gated sodium channels alone is sufficient to increase the invasive potential of non-metastatic (LC cells) as well as more aggressive cells (i.e., C4 and C4-2 cells). Together, the data suggest that increased voltage-gated sodium channel expression alone is necessary and sufficient to increase the invasive potential of a set of human prostate cancer cell lines that serve as a model for prostate cancer metastasis.


Assuntos
Proteínas Musculares/fisiologia , Metástase Neoplásica/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Sódio/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Proteínas Musculares/antagonistas & inibidores , Canal de Sódio Disparado por Voltagem NAV1.4 , Canais de Sódio/biossíntese , Tetrodotoxina/farmacologia
4.
J Nutr ; 132(6 Suppl 2): 1616S-21S, 2002 06.
Artigo em Inglês | MEDLINE | ID: mdl-12042473

RESUMO

During strenuous exercise, markers of oxidation increase and antioxidant capacity decreases. Antioxidants such as vitamin C may combat this oxidation stress. The benefits of vitamin C to greyhounds undertaking intense sprint exercise has not been investigated. The objective of this experiment was to determine whether a large dose (1 g or 57 mmol) of ascorbic acid influences performance and oxidative stress in greyhounds. Five adult female, trained racing greyhounds were assigned to receive each of three treatments for 4 wk per treatment: 1) no supplemental ascorbate; 2) 1 g oral ascorbate daily, administered after racing; 3) 1 g oral ascorbate daily, administered 1 h before racing. Dogs raced 500 m twice weekly. At the end of each treatment period, blood was collected before and 5 min, 60 min and 24 h after racing. Plasma ascorbate, alpha-tocopherol, thiobarbituric acid-reducing substances (TBARS) and Trolox equivalent antioxidant capacity (TEAC) concentrations were measured and adjusted to compensate for hemoconcentration after racing. TBARS, TEAC and alpha-tocopherol concentrations were unaffected by supplemental vitamin C. Plasma ascorbic acid concentrations 60 min after racing were higher in dogs that received vitamin C before racing than in dogs that either received no vitamin C or received vitamin C after racing. The dogs ran, on average, 0.2 s slower when supplemented with 1 g of vitamin C, equivalent to a lead of 3 m at the finish of a 500-m race. Supplementation with vitamin C, therefore, appeared to slow racing greyhounds.


Assuntos
Ácido Ascórbico/farmacologia , Cães/fisiologia , Atividade Motora/efeitos dos fármacos , Corrida , Animais , Antioxidantes/metabolismo , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/sangue , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Estresse Oxidativo/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo , Vitamina E/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...