Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Heliyon ; 10(4): e25661, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384534

RESUMO

Purpose: To evaluate visuo-cognitive sequelae following blast-induced traumatic brain injury in a rat model. Methods: Rats were randomly assigned to one of four groups depending on the intensity/quantity of a blast received in a blast chamber: sham (no blast), low intensity (22 psi), medium intensity (26 psi), or three medium intensity blasts (26 psi × 3). After recovery, all subjects were given visual discrimination tasks of increasing complexity, until mastery. After behavioral training, visual function was assessed via spectral-domain optical coherence tomography and pattern electroretinogram, and the extent of retinal damage was quantified via immunohistochemistry of retinal ganglion cells. Results: None of the measures assessing visual function revealed significant differences as a function of blast intensity/quantity. Behavioral training did not disclose short-term effects of blast in general motivation or the development of anticipatory responding. No differences in general learning ability and the number of perseverative errors were observed. However, behavioral training found effects of blast in attentional function; relative to controls, subjects that received blasts were faster in learning to attend to informative (over non-informative) cues in the most difficult visual discrimination task. Conclusion: Blast exposure in rats resulted in increased attention following blast, with no appreciable deficits in visual function. These results are contrary to what is often reported for human clinical populations; as such, more research bridging methodological differences is necessary.

2.
Exp Eye Res ; 239: 109754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113955

RESUMO

The purpose of this study was to examine the effect of a blast exposure generated from a shock tube on retinal ganglion cell (RGC) function and structure. Mice were exposed to one of three blast conditions using a shock tube; a single blast wave of 20 PSI, a single blast wave of 30 PSI, or three blast waves of 30 PSI given on three consecutive days with a one-day inter-blast interval. The structure and function of the retina were analyzed using the pattern electroretinogram (PERG), the optomotor reflex (OMR), and optical coherence tomography (OCT). The in vivo parameters were examined at baseline, and then again 1-week, 4-weeks, and 16-weeks following blast exposure. The number of surviving RGCs was quantified at the end of the study. Analysis of mice receiving a 20 PSI injury showed decreased PERG and OMR responses 16-weeks post blast, without evidence of changed retinal thickness or RGC death. Mice subjected to a 30 PSI injury showed decreased PERG responses 4 weeks and 16 weeks after injury, without changes in the retinal thickness or RGC density. Mice subjected to 30 PSI X 3 blast exposures had PERG deficits 1-week and 4-weeks post exposure. There was also significant change in retinal thickness 1-week and 16-weeks post blast exposure. Mice receiving 30 PSI X 3 blast injuries had regional loss of RGCs in the central retina, but not in the mid-peripheral or peripheral retina. Overall, this study has shown that increasing the number of blast exposures and the intensity leads to earlier functional loss of RGCs. We have also shown regional RGC loss only when using the highest blast intensity and number of blast injuries.


Assuntos
Traumatismos por Explosões , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Traumatismos por Explosões/metabolismo , Retina , Eletrorretinografia , Morte Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Exp Eye Res ; 225: 109272, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209837

RESUMO

PURPOSE: The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI). METHODS: C57BL/6J and B6.129S7-Rag1tm1Mom/J (Rag-/-) mice were exposed to one blast injury of 140 kPa. A separate cohort of C57BL/6J mice was exposed to sham-blast. Four weeks following bTBI mice were euthanized, and splenocytes were collected. Adoptive transfer (AT) of splenocytes into naïve C57BL/6J recipient mice was accomplished via tail vein injection. Three groups of mice were analyzed: those receiving AT of splenocytes from C57BL/6J mice exposed to blast (AT-TBI), those receiving AT of splenocytes from C57BL/6J mice exposed to sham (AT-Sham), and those receiving AT of splenocytes from Rag-/- mice exposed to blast (AT-Rag-/-). The visual function of recipient mice was analyzed with the pattern electroretinogram (PERG), and the optomotor response (OMR). The structure of the retina was evaluated using optical coherence tomography (OCT), and histologically using BRN3A-antibody staining. RESULTS: Analysis of the PERG showed a decreased amplitude two months post-AT that persisted for the duration of the study in AT-TBI mice. We also observed a significant decrease in the retinal thickness of AT-TBI mice two months post-AT compared to sham, but not at four or six months post-AT. The OMR response was significantly decreased in AT-TBI mice 5- and 6-months post-AT. BRN3A staining showed a loss of RGCs in AT-TBI and AT-Rag-/- mice. CONCLUSION: These results suggest that the immune system contributes to chronic RGC dysfunction following bTBI.


Assuntos
Lesões Encefálicas Traumáticas , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/complicações , Imunidade
4.
Fluids Barriers CNS ; 19(1): 5, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012589

RESUMO

BACKGROUND: Altered cerebrovascular function and accumulation of amyloid-ß (Aß) after traumatic brain injury (TBI) can contribute to chronic neuropathology and increase the risk for Alzheimer's disease (AD). TBI due to a blast-induced shock wave (bTBI) adversely affects the neurovascular unit (NVU) during the acute period after injury. However, the chronic effects of bTBI and Aß on cellular components of the NVU and capillary network are not well understood. METHODS: We exposed young adult (age range: 76-106 days) female transgenic (Tg) APP/PS1 mice, a model of AD-like Aß amyloidosis, and wild type (Wt) mice to a single bTBI (~ 138 kPa or ~ 20 psi) or to a Sham procedure. At 3-months or 12-months survival after exposure, we quantified neocortical Aß load in Tg mice, and percent contact area between aquaporin-4 (AQP4)-immunoreactive astrocytic end-feet and brain capillaries, numbers of PDGFRß-immunoreactive pericytes, and capillary densities in both genotypes. RESULTS: The astroglia AQP4-capillary contact area in the Tg-bTBI group was significantly lower than in the Tg-Sham group at 3-months survival. No significant changes in the AQP4-capillary contact area were observed in the Tg-bTBI group at 12-months survival or in the Wt groups. Capillary density in the Tg-bTBI group at 12-months survival was significantly higher compared to the Tg-Sham control and to the Tg-bTBI 3-months survival group. The Wt-bTBI group had significantly lower capillary density and pericyte numbers at 12-months survival compared to 3-months survival. When pericytes were quantified relative to capillary density, no significant differences were detected among the experimental groups, for both genotypes. CONCLUSION: In conditions of high brain concentrations of human Aß, bTBI exposure results in reduced AQP4 expression at the astroglia-microvascular interface, and in chronic capillary proliferation like what has been reported in AD. Long term microvascular changes after bTBI may contribute to the risk for developing chronic neurodegenerative disease later in life.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Traumatismos por Explosões , Lesões Encefálicas Traumáticas , Microvasos , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Traumatismos por Explosões/complicações , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Microvasos/metabolismo , Microvasos/fisiopatologia
5.
Curr Eye Res ; 47(4): 597-605, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34738835

RESUMO

PURPOSE: The purpose of this study was to examine the expression of glial-derived neurotrophic factor (GDNF), the GDNF receptors GFRα1 and GFRα2, ciliary neurotrophic factor (CNTF), and the CNTF receptor CNTFRα in normal and glaucomatous human tissue. METHODS: Human retinas were collected from 8 donors that had been clinically diagnosed and treated for glaucoma, and also from 9 healthy control donors. Immunohistochemical analysis for each trophic factor and receptor was performed. The percent of each retinal section labeled with each antibody was quantified for the total retinal thickness, and separately for the retinal ganglion cell (RGC) complex + retinal nerve fiber layer (RNFL). The expression of each protein was correlated with measures of the subject's ocular histories. RESULTS: The percentage area immunopositive for GFRα2 was significantly decreased in the total retinal thickness containing all retinal layers and in the combined RGC complex + RNFL in glaucomatous eyes in both the peripapillary region and more peripheral retinal locations. We also observed a decrease in GFRα1 expression in the peripapillary RGC Complex + RNFL in glaucoma patients compared to healthy control patients. We also observed a relationship between GDNF and its receptors with several outcomes obtained from the medical record. No differences in CNTF or CNTFR labeling were observed. CONCLUSION: Decreases in GDNF receptor expression in glaucomatous tissue may limit the potential for neuroprotective therapy by supplementation with GDNF.


Assuntos
Glaucoma , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Retina , Fator Neurotrófico Ciliar/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Glaucoma/diagnóstico , Glaucoma/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
6.
Vision Res ; 188: 162-173, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333201

RESUMO

Blast-induced traumatic brain injury is the signature injury of modern military conflicts. To more fully understand the effects of blast exposure, we placed rats in different holder configurations, exposed them to blast overpressure, and assessed the degree of eye and brain injury. Anesthetized Long-Evans rats received blast exposures directed at the head (63 kPa, 195 dB-SPL) in either an "open holder" (head and neck exposed; n = 7), or an "enclosed holder" (window for blast exposure to eye; n = 15) and were compared to non-blast exposed (control) rats (n = 22). Outcomes included optomotor response (OMR), electroretinography (ERG), and spectral domain optical coherence tomography (SD-OCT) at 2, 4, and 6 months post-blast, and cognitive function (Y-maze) at 3 months. Spatial frequency and contrast sensitivity were reduced in ipsilateral blast-exposed eyes in both holders (p < 0.01), while contralateral eyes showed greater deficits with the enclosed holder (p < 0.05). Thinner retinas (p < 0.001) and reduced ERG a- and b- wave amplitudes (p < 0.05) were observed for both ipsilateral and contralateral eyes with the enclosed, but not the open, holder. Rats in the open holder showed cognitive deficits compared to rats in the enclosed holder (p < 0.05). Overall, the animal holder configuration used in blast exposure studies can significantly affect outcomes. Enclosed holders may cause secondary damage to the contralateral eye by concussive injury or blast wave reflection off the holder wall. Open holders may damage the brain via rapid head movement (contrecoup injury). These results highlight additional factors to be considered when evaluating patients with blast exposure or developing models of blast injury.


Assuntos
Explosões , Roedores , Animais , Cognição , Modelos Animais de Doenças , Humanos , Ratos , Ratos Long-Evans , Retina
7.
Invest Ophthalmol Vis Sci ; 62(7): 13, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106210

RESUMO

Purpose: The purpose of this study was to examine the influence of genetic background on the retinal ganglion cell (RGC) response to blast-mediated traumatic brain injury (TBI) in Jackson Diversity Outbred (J:DO), C57BL/6J and BALB/cByJ mice. Methods: Mice were subject to one blast injury of 137 kPa. RGC structure was analyzed by optical coherence tomography (OCT), function by the pattern electroretinogram (PERG), and histologically using BRN3A antibody staining. Results: Comparison of the change in each group from baseline for OCT and PERG was performed. There was a significant difference in the J:DOΔOCT compared to C57BL/6J mice (P = 0.004), but not compared to BALB/cByJ (P = 0.21). There was a significant difference in the variance of the ΔOCT in J:DO compared to both C57BL/6J and BALB/cByJ mice. The baseline PERG amplitude was 20.33 ± 9.32 µV, which decreased an average of -4.14 ± 12.46 µV following TBI. Baseline RGC complex + RNFL thickness was 70.92 ± 4.52 µm, which decreased an average of -1.43 ± 2.88 µm following blast exposure. There was not a significant difference in the ΔPERG between J:DO and C57BL/6J (P = 0.13), although the variances of the groups were significantly different. Blast exposure in J:DO mice results in a density change of 558.6 ± 440.5 BRN3A-positive RGCs/mm2 (mean ± SD). Conclusions: The changes in retinal outcomes had greater variance in outbred mice than what has been reported, and largely replicated herein, for inbred mice. These results demonstrate that the RGC response to blast injury is highly dependent upon genetic background.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas , Retina , Células Ganglionares da Retina/fisiologia , Estresse Fisiológico/fisiologia , Fator de Transcrição Brn-3A/genética , Animais , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Eletrorretinografia/métodos , Variação Genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Retina/patologia , Retina/fisiologia , Tomografia de Coerência Óptica/métodos
8.
Neurotrauma Rep ; 2(1): 1-13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748810

RESUMO

The jet-flow overpressure chamber (OPC) has been previously reported as a model of blast-mediated traumatic brain injury (bTBI). However, rigorous characterization of the features of this injury apparatus shows that it fails to recapitulate exposure to an isolated blast wave. Through combined experimental and computational modeling analysis of gas-dynamic flow conditions, we show here that the jet-flow OPC produces a collimated high-speed jet flow with extreme dynamic pressure that delivers a severe compressive impulse. Variable rupture dynamics of the diaphragm through which the jet flow originates also generate a weak and infrequent shock front. In addition, there is a component of acceleration-deceleration injury to the head as it is agitated in the headrest. Although not a faithful model of free-field blast exposure, the jet-flow OPC produces a complex multi-modal model of TBI that can be useful in laboratory investigation of putative TBI therapies and fundamental neurophysiological processes after brain injury.

9.
Curr Eye Res ; 46(5): 739-745, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32985274

RESUMO

PURPOSE: To examine the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, tropomyosin-related kinase receptor-B (TrkB), in normal and glaucomatous human retinas. METHODS: Human retinas were collected from 8 donors who had been clinically diagnosed and treated for glaucoma, and from 9 control donors. Immunohistochemical analysis for BDNF and TrkB was performed. The percent of each retina expressing BDNF and TrkB was quantified for the total retinal thickness, and separately for the retinal ganglion cell (RGC) complex + retinal nerve fiber layer (RNFL). The expression of each protein was correlated with clinical outcomes obtained from the subject's ocular histories. RESULTS: There was no significant difference in BDNF or TrkB expression when comparing glaucomatous and control retinas. Correlation analysis revealed a significant relationship between BDNF expression and the use of prostaglandin analogs. TrkB expression was highly correlated with the last-measured intraocular pressure (IOP), the use of carbonic anhydrase inhibitors, the use of beta blockers, and the total number of drugs used for the treatment of glaucoma. CONCLUSION: Topical drugs used to treat glaucoma were associated with an increase in retinal BDNF and TrkB expression in human retina, independent of IOP, which may represent molecular evidence of neuroprotective pathway activation.


Assuntos
Anti-Hipertensivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , Prostaglandinas Sintéticas/uso terapêutico , Receptor trkB/metabolismo , Retina/metabolismo , Administração Oftálmica , Idoso , Idoso de 80 Anos ou mais , Feminino , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Imuno-Histoquímica , Pressão Intraocular , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/metabolismo , Soluções Oftálmicas , Células Ganglionares da Retina/metabolismo
10.
Invest Ophthalmol Vis Sci ; 61(12): 7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33030508

RESUMO

Purpose: In a mouse model of blast-mediated traumatic brain injury (bTBI), interleukin-1 (IL-1)-pathway components were tested as potential therapeutic targets for bTBI-mediated retinal ganglion cell (RGC) dysfunction. Sex was also evaluated as a variable for RGC outcomes post-bTBI. Methods: Male and female mice with null mutations in genes encoding IL-1α, IL-1ß, or IL-1RI were compared to C57BL/6J wild-type (WT) mice after exposure to three 20-psi blast waves given at an interblast interval of 1 hour or to mice receiving sham injury. To determine if genetic blockade of IL-1α, IL-1ß, or IL-1RI could prevent damage to RGCs, the function and structure of these cells were evaluated by pattern electroretinogram and optical coherence tomography, respectively, 5 weeks following blast or sham exposure. RGC survival was also quantitatively assessed via immunohistochemical staining of BRN3A at the completion of the study. Results: Our results showed that male and female WT mice had a similar response to blast-induced retinal injury. Generally, constitutive deletion of IL-1α, IL-1ß, or IL-1RI did not provide full protection from the effects of bTBI on visual outcomes; however, injured WT mice had significantly worse visual outcomes compared to the injured genetic knockout mice. Conclusions: Sex does not affect RGC outcomes after bTBI. The genetic studies suggest that deletion of these IL-1 pathway components confers some protection, but global deletion from birth did not result in a complete rescue.


Assuntos
Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Interleucina-1/genética , Células Ganglionares da Retina/fisiologia , Acuidade Visual/fisiologia , Animais , Traumatismos por Explosões/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Sobrevivência Celular/fisiologia , Eletrorretinografia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fatores Sexuais , Tomografia de Coerência Óptica , Fator de Transcrição Brn-3A/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(44): 27667-27675, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087571

RESUMO

Chronic neurodegeneration in survivors of traumatic brain injury (TBI) is a major cause of morbidity, with no effective therapies to mitigate this progressive and debilitating form of nerve cell death. Here, we report that pharmacologic restoration of the blood-brain barrier (BBB), 12 mo after murine TBI, is associated with arrested axonal neurodegeneration and cognitive recovery, benefits that persisted for months after treatment cessation. Recovery was achieved by 30 d of once-daily administration of P7C3-A20, a compound that stabilizes cellular energy levels. Four months after P7C3-A20, electron microscopy revealed full repair of TBI-induced breaks in cortical and hippocampal BBB endothelium. Immunohistochemical staining identified additional benefits of P7C3-A20, including restoration of normal BBB endothelium length, increased brain capillary pericyte density, increased expression of BBB tight junction proteins, reduced brain infiltration of immunoglobulin, and attenuated neuroinflammation. These changes were accompanied by cessation of TBI-induced chronic axonal degeneration. Specificity for P7C3-A20 action on the endothelium was confirmed by protection of cultured human brain microvascular endothelial cells from hydrogen peroxide-induced cell death, as well as preservation of BBB integrity in mice after exposure to toxic levels of lipopolysaccharide. P7C3-A20 also protected mice from BBB degradation after acute TBI. Collectively, our results provide insights into the pathophysiologic mechanisms behind chronic neurodegeneration after TBI, along with a putative treatment strategy. Because TBI increases the risks of other forms of neurodegeneration involving BBB deterioration (e.g., Alzheimer's disease, Parkinson's disease, vascular dementia, chronic traumatic encephalopathy), P7C3-A20 may have widespread clinical utility in the setting of neurodegenerative conditions.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Carbazóis/farmacologia , Cognição/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Carbazóis/uso terapêutico , Células Cultivadas , Doença Crônica/tratamento farmacológico , Cognição/fisiologia , Modelos Animais de Doenças , Células Endoteliais , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Masculino , Camundongos , Microscopia Eletrônica , Microvasos/citologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Fármacos Neuroprotetores/uso terapêutico , Cultura Primária de Células , Sobreviventes
12.
Heliyon ; 6(2): e03374, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099918

RESUMO

In addition to needing acute emergency management, blast-mediated traumatic brain injury (TBI) is also a chronic disorder with delayed-onset symptoms that manifest and progress over time. While the immediate consequences of acute blast injuries are readily apparent, chronic sequelae are harder to recognize. Indeed, the identification of individuals with mild-TBI or TBI-induced symptoms is greatly impaired in large part due to the lack of objective and robust biomarkers. The purpose of this study was to address these need by identifying candidates for serum-based biomarkers of blast TBI, and also to identify unique or differentially regulated protein expression in the thalamus in C57BL/6J mice exposed to blast using high throughput qualitative screens of protein expression. To identify thalamic proteins differentially or uniquely associated with blast exposure, we utilized an antibody-based affinity-capture strategy (referred to as "proteomics-based analysis of depletomes"; PAD) to deplete thalamic lysates from blast-treated mice of endogenous thalamic proteins also found in control mice. Analysis of this "depletome" detected 75 unique proteins, many with associations to the myelin sheath. To identify blast-associated proteins eliciting production of circulating autoantibodies, serum antibodies of blast-treated mice were immobilized, and their immunogens subsequently identified by proteomic analysis of proteins specifically captured following incubation with thalamic lysates (a variant of a strategy referred to as "proteomics-based expression library screening"; PELS). This analysis identified 46 blast-associated immunogenic proteins, including 6 shared in common with the PAD analysis (ALDOA, PHKB, HBA-A1, DPYSL2, SYN1, and CKB). These proteins and their autoantibodies are appropriate for further consideration as biomarkers of blast-mediated TBI.

13.
J Neurotrauma ; 37(12): 1463-1480, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056479

RESUMO

The purpose of this study was to characterize acute changes in inflammatory pathways in the mouse eye after blast-mediated traumatic brain injury (bTBI) and to determine whether modulation of these pathways could protect the structure and function of retinal ganglion cells (RGC). The bTBI was induced in C57BL/6J male mice by exposure to three 20 psi blast waves directed toward the head with the body shielded, with an inter-blast interval of one hour. Acute cytokine expression in retinal tissue was measured through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) four hours post-blast. Increased retinal expression of interleukin (lL)-1ß, IL-1α, IL-6, and tumor necrosis factor (TNF)α was observed in bTBI mice exposed to blast when compared with shams, which was associated with activation of microglia and macroglia reactivity, assessed via immunohistochemistry with ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein, respectively, one week post-blast. Blockade of the IL-1 pathway was accomplished using anakinra, an IL-1RI antagonist, administered intra-peritoneally for one week before injury and continuing for three weeks post-injury. Retinal function and RGC layer thickness were evaluated four weeks post-injury using pattern electroretinogram (PERG) and optical coherence tomography (OCT), respectively. After bTBI, anakinra treatment resulted in a preservation of RGC function and RGC structure when compared with saline treated bTBI mice. Optic nerve integrity analysis demonstrated a trend of decreased damage suggesting that IL-1 blockade also prevents axonal damage after blast. Blast exposure results in increased retinal inflammation including upregulation of pro-inflammatory cytokines and activation of resident microglia and macroglia. This may explain partially the RGC loss we observed in this model, as blockade of the acute inflammatory response after injury with the IL-1R1 antagonist anakinra resulted in preservation of RGC function and RGC layer thickness.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Imunidade/imunologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Receptores de Interleucina-1/antagonistas & inibidores , Retina/imunologia , Percepção Visual/imunologia , Animais , Traumatismos por Explosões/diagnóstico por imagem , Traumatismos por Explosões/tratamento farmacológico , Traumatismos por Explosões/imunologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Eletrorretinografia/métodos , Imunidade/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Retina/diagnóstico por imagem , Retina/efeitos dos fármacos , Tomografia de Coerência Óptica/métodos , Resultado do Tratamento , Percepção Visual/efeitos dos fármacos
14.
Invest Ophthalmol Vis Sci ; 60(13): 4159-4170, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598627

RESUMO

Purpose: The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function. Methods: Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI). RGC structure was analyzed by optical coherence tomography (OCT) and function was analyzed by the pattern electroretinogram (PERG). BRN3A-positive cells were quantified to determine RGC density. RNA-seq analysis was used to identify transcriptional changes between groups. Results: Analysis of mice with multiple blast exposures of 20 PSI revealed no significant differences compared to one 20-pounds per square inch (PSI) exposure using OCT, PERG, or BRN3A cell counts. Analysis of mice exposed to two preconditioning 5-PSI blasts prior to one 20-PSI blast showed preservation of RGC structure and function. RNA-seq analysis of the retina identified multiple transcriptomic changes between conditions. Pharmacologic inhibition of KMO preserved RGC responses compared to vehicle-treated mice. Conclusions: Preconditioning protects RGC from blast injury. Protective effects appear to involve changes in KMO activity, whose inhibition is also protective.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Quinurenina 3-Mono-Oxigenase/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/efeitos dos fármacos , Tomografia de Coerência Óptica
15.
Invest Ophthalmol Vis Sci ; 60(7): 2716-2725, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31247112

RESUMO

Purpose: Traumatic brain injury (TBI) is a risk factor for developing chronic neurodegenerative conditions including Alzheimer's disease (AD). The purpose of this study was to examine chronic effects of blast TBI on retinal ganglion cells (RGC), optic nerve, and brain amyloid load in a mouse model of AD amyloidosis. Methods: Transgenic (TG) double-mutant APPswePSENd19e (APP/PS1) mice and nontransgenic (Non-TG) littermates were exposed to a single blast TBI (20 psi) at age 2 to 3 months. RGC cell structure and function was evaluated 2 months later (average age at endpoint = 4.5 months) using pattern electroretinogram (PERG), optical coherence tomography (OCT), and the chromatic pupil light reflex (cPLR), followed by histologic analysis of retina, optic nerve, and brain amyloid pathology. Results: APP/PS1 mice exposed to blast TBI (TG-Blast) had significantly lower PERG and cPLR responses 2 months after injury compared to preblast values and compared to sham groups of APP/PS1 (TG-Sham) and nontransgenic (Non-TG-Sham) mice as well as nontransgenic blast-exposed mice (Non-TG-Blast). The TG-Blast group also had significantly thinner RGC complex and more optic nerve damage compared to all groups. No amyloid-ß (Aß) deposits were detected in retinas of APP/PS1 mice; however, increased amyloid precursor protein (APP)/Aß-immunoreactivity was seen in TG-Blast compared to TG-Sham mice, particularly near blood vessels. TG-Blast and TG-Sham groups exhibited high variability in pathology severity, with a strong, but not statistically significant, trend for greater cerebral cortical Aß plaque load in the TG-Blast compared to TG-Sham group. Conclusions: When combined with a genetic susceptibility for developing amyloidosis of AD, blast TBI exposure leads to earlier RGC and optic nerve damage associated with modest but detectable increase in cerebral cortical Aß pathology. These findings suggest that genetic risk factors for AD may increase the sensitivity of the retina to blast-mediated damage.


Assuntos
Doença de Alzheimer/patologia , Amiloidose/metabolismo , Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/complicações , Doenças Retinianas/etiologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/patologia , Animais , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Reflexo Pupilar/fisiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/fisiopatologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica
16.
Sci Rep ; 8(1): 14385, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258206

RESUMO

Neprilysin (NEP), an ectoenzyme that modulates inflammation by degrading neuropeptides, was recently identified in the human corneal epithelium. The cornea expresses many NEP substrates, but the function of NEP in homeostatic maintenance and wound healing of the cornea is unknown. We therefore investigated the role of this enzyme under naive and injured conditions using NEP-deficient (NEP-/-) and wild type (WT) control mice. In vivo ocular surface imaging and histological analysis of corneal tissue showed no differences in limbal vasculature or corneal anatomy between naive NEP-/- and WT mice. Histological examination revealed increased corneal innervation in NEP-/- mice. In an alkali burn model of corneal injury, corneal wound healing was significantly accelerated in NEP-/- mice compared to WT controls 3 days after injury. Daily intraperitoneal administration of the NEP inhibitor thiorphan also accelerated corneal wound healing after alkali injury in WT mice. Collectively, our data identify a previously unknown role of NEP in the cornea, in which pharmacologic inhibition of its activity may provide a novel therapeutic option for patients with corneal injury.


Assuntos
Queimaduras Químicas/tratamento farmacológico , Lesões da Córnea/tratamento farmacológico , Neprilisina/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Tiorfano/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Queimaduras Químicas/genética , Queimaduras Químicas/patologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/patologia , Lesões da Córnea/genética , Lesões da Córnea/patologia , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neprilisina/genética
17.
Free Radic Biol Med ; 124: 408-419, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29940351

RESUMO

Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases.


Assuntos
Estresse Oxidativo/fisiologia , Retina/enzimologia , Superóxido Dismutase/metabolismo , Corpo Vítreo/enzimologia , Animais , Retinopatia Diabética/enzimologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout
18.
eNeuro ; 3(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822499

RESUMO

Axonal degeneration is a prominent feature of many forms of neurodegeneration, and also an early event in blast-mediated traumatic brain injury (TBI), the signature injury of soldiers in Iraq and Afghanistan. It is not known, however, whether this axonal degeneration is what drives development of subsequent neurologic deficits after the injury. The Wallerian degeneration slow strain (WldS) of mice is resistant to some forms of axonal degeneration because of a triplicated fusion gene encoding the first 70 amino acids of Ufd2a, a ubiquitin-chain assembly factor, that is linked to the complete coding sequence of nicotinamide mononucleotide adenylyltransferase 1 (NMAT1). Here, we demonstrate that resistance of WldS mice to axonal degeneration after blast-mediated TBI is associated with preserved function in hippocampal-dependent spatial memory, cerebellar-dependent motor balance, and retinal and optic nerve-dependent visual function. Thus, early axonal degeneration is likely a critical driver of subsequent neurobehavioral complications of blast-mediated TBI. Future therapeutic strategies targeted specifically at mitigating axonal degeneration may provide a uniquely beneficial approach to treating patients suffering from the effects of blast-mediated TBI.


Assuntos
Traumatismos por Explosões/patologia , Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Degeneração Walleriana/patologia , Degeneração Walleriana/fisiopatologia , Animais , Axônios/patologia , Axônios/fisiologia , Traumatismos por Explosões/complicações , Traumatismos por Explosões/psicologia , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/psicologia , Cognição , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto , Camundongos Mutantes , Atividade Motora , Neuroproteção , Retina/patologia , Retina/fisiopatologia , Memória Espacial , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Transtornos da Visão/etiologia , Transtornos da Visão/patologia , Transtornos da Visão/fisiopatologia , Transtornos da Visão/psicologia , Percepção Visual , Degeneração Walleriana/etiologia , Degeneração Walleriana/psicologia
19.
Exp Eye Res ; 146: 386-392, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26283021

RESUMO

The present article introduces RetFM-J, a semi-automated ImageJ-based module that detects, counts, and collects quantitative data on nuclei of the inner retina from H&E-stained whole-mounted retinas. To illustrate performance, computer-derived outputs were analyzed in inbred C57BL/6J mice. Automated characterization yielded computer-derived outputs that closely matched manual counts. As a method using open-source software that is freely available, inexpensive staining reagents that are robust, and imaging equipment that is routine to most laboratories, RetFM-J could be utilized in a wide variety of experiments benefiting from high-throughput, quantitative, uniform analyses of total cellularity in the inner retina.


Assuntos
Contagem de Células/métodos , Núcleo Celular , Diagnóstico por Computador , Técnicas de Diagnóstico Oftalmológico , Retina/diagnóstico por imagem , Células Ganglionares da Retina/citologia , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Modelos Animais
20.
J Neurophysiol ; 114(1): 199-208, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25925322

RESUMO

The purpose of this study was to determine the effect of supplementing the diet of a mouse model of type 2 diabetes with menhaden (fish) oil or daily treatment with resolvin D1 on diabetic neuropathy. The end points evaluated included motor and sensory nerve conduction velocity, thermal sensitivity, innervation of sensory nerves in the cornea and skin, and the retinal ganglion cell complex thickness. Menhaden oil is a natural source for n-3 polyunsaturated fatty acids, which have been shown to have beneficial effects in other diseases. Resolvin D1 is a metabolite of docosahexaenoic acid and is known to have anti-inflammatory and neuroprotective properties. To model type 2 diabetes, mice were fed a high-fat diet for 8 wk followed by a low dosage of streptozotocin. After 8 wk of hyperglycemia, mice in experimental groups were treated for 6 wk with menhaden oil in the diet or daily injections of 1 ng/g body wt resolvin D1. Our findings show that menhaden oil or resolvin D1 did not improve elevated blood glucose, HbA1C, or glucose utilization. Untreated diabetic mice were thermal hypoalgesic, had reduced motor and sensory nerve conduction velocities, had decreased innervation of the cornea and skin, and had thinner retinal ganglion cell complex. These end points were significantly improved with menhaden oil or resolvin D1 treatment. Exogenously, resolvin D1 stimulated neurite outgrowth from primary cultures of dorsal root ganglion neurons from normal mice. These studies suggest that n-3 polyunsaturated fatty acids derived from fish oil could be an effective treatment for diabetic neuropathy.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/dietoterapia , Neuropatias Diabéticas/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Óleos de Peixe/administração & dosagem , Animais , Células Cultivadas , Córnea/inervação , Córnea/patologia , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Suplementos Nutricionais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Temperatura Alta , Hiperalgesia/dietoterapia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Camundongos Endogâmicos C57BL , Condução Nervosa/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Células Ganglionares da Retina/patologia , Pele/inervação , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...