Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(44): 31151-31166, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37881756

RESUMO

This paper explores the impact of dysprosium (Dy) doping on structural, optical, and photocatalytic properties of tin oxide (SnO2) thin films fabricated via spray pyrolysis. Dysprosium doping levels ranged from 0 to 7 at%, and films were grown on glass substrates at 350 °C. X-ray diffraction (XRD) analysis revealed an increase in crystallite size with Dy doping, signifying improved crystalline quality. Simultaneously, dislocation density and strain decreased, indicating enhanced film quality. Texture coefficient (Tchkl) results showed a predominant crystal orientation along the (110) plane due to Dy doping. Optical band gap energy (Eg) decreased with Dy doping up to 5%. Urbach energy increased with Dy doping, suggesting atomic structural flaws and defects. Scanning electron microscopy (SEM) analysis revealed the presence of numerous micro-aggregates on the film's surface. Notably, the density of these micro-aggregates increased proportionally with higher Dy doping levels, particularly emphasizing the pronounced effect observed in SnO2:Dy 5% thin films. These findings underscore the potential of Dy-doped SnO2 thin films for advanced photocatalytic applications, with SnO2:Dy 5% exhibiting favorable properties and demonstrating a 90.99% degradation efficiency in three hours under solar irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...