Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 57(10): 1465-72, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18803954

RESUMO

Oxidative stress and protein glycation can contribute to the development of insulin resistance and complications associated with type 2 diabetes mellitus. The antioxidant alpha-lipoic acid (ALA) reduces oxidative stress and the formation of advanced glycation end products (AGEs) and improves insulin sensitivity in skeletal muscle and liver. The AGE inhibitor pyridoxamine (PM) prevents irreversible protein glycation, thereby reducing various diabetic complications. The potential interactive effects of ALA and PM in the treatment of whole-body and skeletal muscle insulin resistance have not been investigated. Therefore, this study was designed to determine the effects of combined ALA and PM treatments on reducing muscle oxidative stress and ameliorating insulin resistance in prediabetic obese Zucker rats. Obese Zucker rats were assigned to either a control group or to a treatment group receiving daily injections of the R-(+)-enantiomer of ALA (R-ALA, 92 mg/kg) or PM (60 mg/kg), individually or in combination, for 6 weeks. The individual and combined treatments with R-ALA and PM were effective in significantly (P < .05) reducing plantaris muscle protein carbonyls (33%-40%) and urine-conjugated dienes (22%-38%), markers of oxidative stress. The R-ALA and PM in combination resulted in the largest reductions of fasting plasma glucose (23%), insulin (16%), and free fatty acids (24%) and of muscle triglycerides (45%) compared with alterations elicited by individual treatment with R-ALA or PM. Moreover, the combination of R-ALA and PM elicited the greatest enhancement of whole-body insulin sensitivity both in the fasted state and during an oral glucose tolerance test. Finally, combined R-ALA/PM treatments maintained the 44% enhancement of in vitro insulin-mediated glucose transport activity in soleus muscle of obese Zucker rats treated with R-ALA alone. Collectively, these results document a beneficial interaction of the antioxidant R-ALA and the AGE inhibitor PM in the treatment of whole-body and skeletal muscle insulin resistance in obese Zucker rats.


Assuntos
Antioxidantes/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Resistência à Insulina/fisiologia , Piridoxamina/farmacologia , Ácido Tióctico/farmacologia , Animais , Glicemia/metabolismo , Interações Medicamentosas , Ácidos Graxos não Esterificados/sangue , Feminino , Teste de Tolerância a Glucose , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Zucker
2.
Arch Physiol Biochem ; 113(4-5): 221-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18158645

RESUMO

Lithium increases glucose transport and glycogen synthesis in insulin-sensitive cell lines and rat skeletal muscle, and has been used as a non-selective inhibitor of glycogen synthase kinase-3 (GSK-3). However, the molecular mechanisms underlying lithium action on glucose transport in mammalian skeletal muscle are unknown. Therefore, we examined the effects of lithium on glucose transport activity, glycogen synthesis, insulin signaling elements (insulin receptor (IR), Akt, and GSK-3beta), and the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) in the absence or presence of insulin in isolated soleus muscle from lean Zucker rats. Lithium (10 mM LiCl) enhanced basal glucose transport by 62% (p < 0.05) and augmented net glycogen synthesis by 112% (p < 0.05). Whereas lithium did not affect basal IR tyrosine phosphorylation or Akt ser(473) phosphorylation, it did enhance (41%, p < 0.05) basal GSK-3beta ser(9) phosphorylation. Lithium further enhanced (p < 0.05) the stimulatory effects of insulin on glucose transport (43%), glycogen synthesis (44%), and GSK-3beta ser(9) phosphorylation (13%). Lithium increased (p < 0.05) p38 MAPK phosphorylation both in the absence (37%) and presence (41%) of insulin. Importantly, selective inhibition of p38 MAPK (using 10 microM A304000) completely prevented the basal activation of glucose transport by lithium, and also significantly reduced (52%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport. Theses results demonstrate that lithium enhances basal and insulin-stimulated glucose transport activity and glycogen synthesis in insulin-sensitive rat skeletal muscle, and that these effects are associated with a significant enhancement of GSK-3beta phosphorylation. Importantly, we have documented an essential role of p38 MAPK phosphorylation in the action lithium on the glucose transport system in isolated mammalian skeletal muscle.


Assuntos
Glucose/metabolismo , Cloreto de Lítio/farmacologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Glicogênio/biossíntese , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Zucker , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...