Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 113(3): 925-932, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12223654

RESUMO

Acetaldehyde (AA), ethanol, and CO2 production in red bell pepper (Capsicum annum L.) fruit has been measured in a continuous flow system as the fruit was switched between 20% O2 and anaerobic conditions. Minimum gas phase concentrations of 0.5 nL L-1, 10 nL L-1, and 1 mL L-1, respectively, can be detected employing a laser-based photoacoustic technique. This technique allows monitoring of low production rates and transient features in real time. At the start of anaerobic treatment respiration decreases by 60% within 0.5 h, whereas AA and ethanol production is delayed by 1 to 3 h. This suggests a direct slow-down of the tricarboxylic acid cycle and a delayed onset of alcoholic fermentation. Reexposure of the fruit to oxygen results in a 2- to 10-fold upsurge in AA production. A short anoxic period leads to a sharp transient peak lasting about 40 min, whereas after numerous and longer anoxic periods, post-anoxic AA production stays high for several hours. High sensitivity of the fruit tissue to oxygen is further evidenced by a sharp decrease in post-anoxic AA production upon an early return to anaerobic conditions. Ethanol oxidation by the "peroxidatic" action of catalase is proposed to account for the immediate post-anoxic AA upsurge.

2.
Plant Physiol ; 107(4): 1371-1377, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12228441

RESUMO

The function of the coronet region of the cherry tomato (Lycopersicon esculentum Cherry) as the main emission channel for ethylene was investigated. Ethylene was measured employing two laser-based detection systems, the photothermal deflection instrument and the photoacoustic detection setup. It is possible to detect minimum ethylene concentrations of 1 nL L-1 locally and rapidly with the first instrument and concentrations of 6 pL L-1 in a continuous flow system with the second setup. The continuous flow system makes it possible to change the air composition and to monitor its influence on the ethylene production of the tomato. The response times of the two instruments are 30 s and 4 min, respectively. The local character of the measurements makes it possible to determine the emission sites of the gaseous plant hormone ethylene and their relative importance. Transient anoxic conditions stop production of ethylene; return to aerobic conditions shows the evolution of the accumulated ethylene precursor 1-aminocyclopropane-1-carboxylic acid and its renewed production on the measured ethylene emission, with a time resolution of several minutes. Temporarily sealing the main emission channel yields results comparable to anoxia.

3.
Plant Physiol ; 103(3): 783-791, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12231979

RESUMO

Submergence-induced ethylene synthesis and entrapment were studied in two contrasting Rumex species, one flood-resistant (Rumex palustris) and the other flood-sensitive (Rumex acetosa). The application of a photoacoustic method to determine internal ethylene concentrations in submerged plants is discussed. A comparison with an older technique (vacuum extraction) is described. For the first time ethylene production before, during, and after submergence and the endogenous concentration during submergence were continuously measured on a single intact plant without physical perturbation. Both Rumex species were characterized by enhanced ethylene concentrations in the shoot after 24 h of submergence. This was not related to enhanced synthesis but to continued production and physical entrapment. In R. palustris, high endogenous ethylene levels correlated with enhanced petiole and lamina elongation. No dramatic change in leaf growth rate was observed in submerged R. acetosa shoots. After desubmergence both species showed an increase in ethylene production, the response being more pronounced in R. palustris. This increase was linked to the enhanced postsubmergence growth rate of leaves of R. palustris. Due to the very rapid escape of ethylene out of desubmerged plants to the atmosphere (90% disappeared within 1 min), substantial underestimation of internal ethylene concentrations can be expected using more conventional vacuum extraction techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...