Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6672): 829-834, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972188

RESUMO

The mussel byssus stem provides a strong and compact mechanically mismatched biointerface between living tissue and a nonliving biopolymer. Yet, in a poorly understood process, mussels can simply jettison their entire byssus, rebuilding a new one in just hours. We characterized the structure and composition of the byssus biointerface using histology, confocal Raman mapping, phase contrast-enhanced microcomputed tomography, and advanced electron microscopy, revealing a sophisticated junction consisting of abiotic biopolymer sheets interdigitated between living extracellular matrix. The sheet surfaces are in intimate adhesive contact with billions of motile epithelial cilia that control biointerface strength and stem release through their collective movement, which is regulated neurochemically. We posit that this may involve a complex sensory pathway by which sessile mussels respond to environmental stresses to release and relocate.


Assuntos
Biopolímeros , Bivalves , Cílios , Animais , Microtomografia por Raio-X
2.
Proc Natl Acad Sci U S A ; 120(48): e2311901120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983489

RESUMO

Zebra and quagga mussels (Dreissena spp.) are invasive freshwater biofoulers that perpetrate devastating economic and ecological impact. Their success depends on their ability to anchor onto substrates with protein-based fibers known as byssal threads. Yet, compared to other mussel lineages, little is understood about the proteins comprising their fibers or their evolutionary history. Here, we investigated the hierarchical protein structure of Dreissenid byssal threads and the process by which they are fabricated. Unique among bivalves, we found that threads possess a predominantly ß-sheet crystalline structure reminiscent of spider silk. Further analysis revealed unexpectedly that the Dreissenid thread protein precursors are mechanoresponsive α-helical proteins that are mechanically processed into ß-crystallites during thread formation. Proteomic analysis of the byssus secretory organ and byssus fibers revealed a family of ultrahigh molecular weight (354 to 467 kDa) asparagine-rich (19 to 20%) protein precursors predicted to form α-helical coiled coils. Moreover, several independent lines of evidence indicate that the ancestral predecessor of these proteins was likely acquired via horizontal gene transfer. This chance evolutionary event that transpired at least 12 Mya has endowed Dreissenids with a distinctive and effective fiber formation mechanism, contributing significantly to their success as invasive species and possibly, inspiring new materials design.


Assuntos
Bivalves , Dreissena , Animais , Seda/química , Proteômica , Bivalves/química , Precursores de Proteínas/metabolismo
3.
J Am Chem Soc ; 145(38): 20749-20754, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722679

RESUMO

Nature is rich with examples of highly specialized biological materials produced by organisms for functions, including defense, hunting, and protection. Along these lines, velvet worms (Onychophora) expel a protein-based slime used for hunting and defense that upon shearing and dehydration forms fibers as stiff as thermoplastics. These fibers can dissolve back into their precursor proteins in water, after which they can be drawn into new fibers, providing biological inspiration to design recyclable materials. Elevated phosphorus content in velvet worm slime was previously observed and putatively ascribed to protein phosphorylation. Here, we show instead that phosphorus is primarily present as phosphonate moieties in the slime of distantly related velvet worm species. Using high-resolution nuclear magnetic resonance (NMR), natural abundance dynamic nuclear polarization (DNP), and mass spectrometry (MS), we demonstrate that 2-aminoethyl phosphonate (2-AEP) is associated with glycans linked to large slime proteins, while transcriptomic analyses confirm the expression of 2-AEP synthesizing enzymes in slime glands. The evolutionary conservation of this rare protein modification suggests an essential functional role of phosphonates in velvet worm slime and should stimulate further study of the function of this unusual chemical modification in nature.


Assuntos
Organofosfonatos , Proteínas , Proteínas/química , Espectroscopia de Ressonância Magnética , Fósforo , Espectrometria de Massas
4.
ACS Appl Mater Interfaces ; 15(24): 29004-29011, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289097

RESUMO

Taking advantage of their thixotropic behavior, microporosity, and modular properties, granular hydrogels formed from jammed hydrogel microparticles have emerged as an exciting class of soft, injectable materials useful for numerous applications, ranging from the production of biomedical scaffolds for tissue repair to the therapeutic delivery of drugs and cells. Recently, the annealing of hydrogel microparticles in situ to yield a porous bulk scaffold has shown numerous benefits in regenerative medicine, including tissue-repair applications. Current annealing techniques, however, mainly rely either on covalent connections, which produce static scaffolds, or transient supramolecular interactions, which produce dynamic but mechanically weak hydrogels. To address these limitations, we developed microgels functionalized with peptides inspired by the histidine-rich cross-linking domains of marine mussel byssus proteins. Functionalized microgels can reversibly aggregate in situ via metal coordination cross-linking to form microporous, self-healing, and resilient scaffolds at physiological conditions by inclusion of minimal amounts of zinc ions at basic pH. Aggregated granular hydrogels can subsequently be dissociated in the presence of a metal chelator or under acidic conditions. Based on the demonstrated cytocompatibility of these annealed granular hydrogel scaffolds, we believe that these materials could be developed toward applications in regenerative medicine and tissue engineering.


Assuntos
Hidrogéis , Microgéis , Hidrogéis/química , Medicina Regenerativa , Peptídeos , Quelantes , Concentração de Íons de Hidrogênio
5.
Adv Sci (Weinh) ; 10(12): e2205713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752390

RESUMO

Deoxyribonucleic acid (DNA) hydrogels are a unique class of programmable, biocompatible materials able to respond to complex stimuli, making them valuable in drug delivery, analyte detection, cell growth, and shape-memory materials. However, unmodified DNA hydrogels in the literature are very soft, rarely reaching a storage modulus of 103  Pa, and they lack functionality, limiting their applications. Here, a DNA/small-molecule motif to create stiff hydrogels from unmodified DNA, reaching 105  Pa in storage modulus is used. The motif consists of an interaction between polyadenine and cyanuric acid-which has 3-thymine like faces-into multimicrometer supramolecular fibers. The mechanical properties of these hydrogels are readily tuned, they are self-healing and thixotropic. They integrate a high density of small, nontoxic molecules, and are functionalized simply by varying the molecule sidechain. They respond to three independent stimuli, including a small molecule stimulus. These stimuli are used to integrate and release DNA wireframe and DNA origami nanostructures within the hydrogel. The hydrogel is applied as an injectable delivery vector, releasing an antisense oligonucleotide in cells, and increasing its gene silencing efficacy. This work provides tunable, stimuli-responsive, exceptionally stiff all-DNA hydrogels from simple sequences, extending these materials' capabilities.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Hidrogéis/química , Nanoestruturas/química , DNA/química , Inativação Gênica
6.
Small ; 19(22): e2300516, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828797

RESUMO

For prey capture and defense, velvet worms eject an adhesive slime which has been established as a model system for recyclable complex liquids. Triggered by mechanical agitation, the liquid bio-adhesive rapidly transitions into solid fibers. In order to understand this mechanoresponsive behavior, here, the nanostructural organization of slime components are studied using small-angle scattering with neutrons and X-rays. The scattering intensities are successfully described with a three-component model accounting for proteins of two dominant molecular weight fractions and nanoscale globules. In contrast to the previous assumption that high molecular weight proteins-the presumed building blocks of the fiber core-are contained in the nanoglobules, it is found that the majority of slime proteins exist freely in solution. Only less than 10% of the slime proteins are contained in the nanoglobules, necessitating a reassessment of their function in fiber formation. Comparing scattering data of slime re-hydrated with light and heavy water reveals that the majority of lipids in slime are contained in the nanoglobules with homogeneous distribution. Vibrating mechanical impact under exclusion of air neither leads to formation of fibers nor alters the bulk structure of slime significantly, suggesting that interfacial phenomena and directional shearing are required for fiber formation.


Assuntos
Nanoestruturas , Proteínas , Proteínas/química , Espalhamento a Baixo Ângulo , Adesivos/química , Espalhamento de Radiação
7.
ACS Nano ; 17(3): 2294-2305, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36657382

RESUMO

Functionally graded interfaces are prominent in biological tissues and are used to mitigate stress concentrations at junctions between mechanically dissimilar components. Biological mechanical gradients serve as important role models for bioinspired design in technically and biomedically relevant applications. However, this necessitates elucidating exactly how natural gradients mitigate mechanical mismatch and how such gradients are fabricated. Here, we applied a cross-disciplinary experimental approach to understand structure, function, and formation of mechanical gradients in byssal threads─collagen-based fibers used by marine mussels to anchor on hard surfaces. The proximal end of threads is approximately 50-fold less stiff and twice as extensible as the distal end. However, the hierarchical structure of the distal-proximal junction is still not fully elucidated, and it is unclear how it is formed. Using tensile testing coupled with video extensometry, confocal Raman spectroscopy, and transmission electron microscopy on native threads, we identified a continuous graded transition in mechanics, composition, and nanofibrillar morphology, which extends several hundreds of microns and which can vary significantly between individual threads. Furthermore, we performed in vitro fiber assembly experiments using purified secretory vesicles from the proximal and distal regions of the secretory glands (which contain different precursor proteins), revealing spontaneous self-assembly of distinctive distal- and proximal-like fiber morphologies. Aside from providing fundamental insights into the byssus structure, function, and fabrication, our findings reveal key design principles for bioinspired design of functionally graded polymeric materials.


Assuntos
Bivalves , Colágeno , Animais , Bivalves/química , Colágeno/química , Adesivos , Teste de Materiais
8.
Chem Rev ; 123(5): 2155-2199, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36508546

RESUMO

There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.


Assuntos
Produtos Biológicos , Cristais Líquidos , Humanos , Seda/química , Polímeros
9.
FEBS Open Bio ; 13(1): 10-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219517

RESUMO

We have identified a novel shell protein, accripin11, as a major soluble component of the calcitic prisms of the fan mussel Pinna nobilis. Initially retrieved from a cDNA library, its full sequence is confirmed here by transcriptomic and proteomic approaches. The sequence of the mature protein is 103 residues with a theoretical molecular weight of 11 kDa and is moderately acidic (pI 6.74) except for its C-terminus which is highly enriched in aspartic acid. The protein exhibits a peculiar cysteine pattern in its central domain. The full sequence shares similarity with six other uncharacterized molluscan shell proteins from the orders Ostreida, Pteriida and Mytilida, all of which are pteriomorphids and produce a phylogenetically restricted pattern of nacro-prismatic shell microstructures. This suggests that accripin11 is a member of a family of clade-specific shell proteins. A 3D model of accripin11 was predicted with AlphaFold2, indicating that it possesses three short alpha helices and a disordered C-terminus. Recombinant accripin11 was tested in vitro for its ability to influence the crystallization of CaCO3 , while a polyclonal antibody was able to locate accripin11 to prismatic extracts, particularly in the acetic acid-soluble matrix. The putative functions of accripin11 are further discussed in relation to shell biomineralization.


Assuntos
Bivalves , Proteômica , Animais , Bivalves/genética , Bivalves/química , Bivalves/metabolismo , Proteínas/química , Carbonato de Cálcio/metabolismo , Ácido Aspártico
10.
ACS Nano ; 16(12): 20877-20890, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36413745

RESUMO

Mussels (Mytilus edulis) adhere to hard surfaces in intertidal marine habitats with a porous underwater glue called the byssus plaque. The plaque is an established role model for bioinspired underwater glues and comprises at least six proteins, most of which are highly cationic and enriched in the post-translationally modified amino acid 3,4-dihydroxyphenylalanine (DOPA). While much is known about the chemistry of plaque adhesion, less is understood about the natural plaque formation process. Here, we investigated plaque structure and formation using 3D electron microscopic imaging, revealing that micro- and nanopores form spontaneously during secretion of protein-filled secretory vesicles. To better understand this process, we developed a method to purify intact secretory vesicles for in vitro assembly studies. We discovered that each vesicle contains a sulfate-associated fluid condensate consisting of ∼9 histidine- and/or DOPA-rich proteins, which are presumably the required ingredients for building a plaque. Rupturing vesicles under specific buffering conditions relevant for natural assembly led to controlled multiphase liquid-liquid phase separation (LLPS) of different proteins, resulting in formation of a continuous phase with coexisting droplets. Rapid coarsening of the droplet phase was arrested through pH-dependent cross-linking of the continuous phase, producing native-like solid porous "microplaques" with droplet proteins remaining as fluid condensates within the pores. Results indicate that histidine deprotonation and sulfates figure prominently in condensate cross-linking. Distilled concepts suggest that combining phase separation with tunable cross-linking kinetics could be effective for microfabricating hierarchically porous materials via self-assembly.


Assuntos
Bivalves , Histidina , Animais , Porosidade , Proteínas/química , Di-Hidroxifenilalanina/química
11.
Biomacromolecules ; 23(4): 1557-1568, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35258298

RESUMO

Because of structural similarities with type-I animal collagen, recombinant bacterial collagen-like proteins have been progressively used as a source of collagen for biomaterial applications. However, the intracellular expression combined with current costly and time-consuming chromatography methods for purification makes the large-scale production of recombinant bacterial collagen challenging. Here, we report the use of an adapted secretion pathway, used natively byEscherichia colito secrete curli fibers, for extracellular secretion of the bacterial collagen. We confirmed that a considerable fraction of expressed collagen (∼70%) is being secreted freely into the extracellular medium, with an initial purity of ∼50% in the crude culture supernatant. To simplify the purification of extracellular collagen, we avoided cell lysis and used cross-flow filtration or acid precipitation to concentrate the voluminous supernatant and separate the collagen from impurities. We confirmed that the secreted collagen forms triple helical structures, using Sirius Red staining and circular dichroism. We also detected collagen biomarkers via Raman spectroscopy, further supporting that the recombinant collagen forms a stable triple helical conformation. We further studied the effect of the isolation methods on the morphology and secondary structure, concluding that the final collagen structure is process-dependent. Overall, we show that the curli secretion system can be adapted for extracellular secretion of the bacterial collagen, eliminating the need for cell lysis, which simplifies the collagen isolation process and enables a simple cost-effective method with potential for scale-up.


Assuntos
Colágeno , Escherichia coli , Animais , Proteínas de Bactérias/metabolismo , Colágeno/química , Meios de Cultura/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química
12.
PNAS Nexus ; 1(1): pgac026, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36712808

RESUMO

Mistletoe viscin is a natural cellulosic adhesive consisting of hierarchically organized cellulose microfibrils (CMFs) surrounded by a humidity-responsive matrix that enables mechanical drawing into stiff and sticky fibers. Here, we explored the processability and adhesive capacity of viscin and demonstrated its potential as a source material for various material applications, as well as a source for bioinspired design. Specifically, we revealed that viscin fibers exhibit humidity-activated self-adhesive properties that enable "contact welding" into complex 2D and 3D architectures under ambient conditions. We additionally discovered that viscin can be processed into stiff and transparent free-standing films via biaxial stretching in the hydrated state, followed by drying, whereby CMFs align along local stress fields. Furthermore, we determined that viscin adheres strongly to both synthetic materials (metals, plastics, and glass) and biological tissues, such as skin and cartilage. In particular, skin adhesion makes viscin a compelling candidate as a wound sealant, as we further demonstrate. These findings highlight the enormous potential of this hygro- and mechano-responsive fiber-reinforced adhesive for bioinspired and biomedical applications.

13.
Science ; 374(6564): 206-211, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618575

RESUMO

To anchor in seashore habitats, mussels fabricate adhesive byssus fibers that are mechanically reinforced by protein-metal coordination mediated by 3,4-dihydroxyphenylalanine (DOPA). The mechanism by which metal ions are integrated during byssus formation remains unknown. In this study, we investigated the byssus formation process in the blue mussel, Mytilus edulis, combining traditional and advanced methods to identify how and when metals are incorporated. Mussels store iron and vanadium ions in intracellular metal storage particles (MSPs) complexed with previously unknown catechol-based biomolecules. During adhesive formation, stockpiled secretory vesicles containing concentrated fluid proteins are mixed with MSPs within a microfluidic-like network of interconnected channels where they coalesce, forming protein-metal bonds within the nascent byssus. These findings advance our understanding of metal use in biological materials with implications for next-generation metallopolymers and adhesives.


Assuntos
Adesivos/metabolismo , Di-Hidroxifenilalanina/metabolismo , Ferro/metabolismo , Mytilus edulis/metabolismo , Vesículas Secretórias/metabolismo , Vanádio/metabolismo , Adesivos/química , Animais , Transporte Biológico , Microfluídica , Proteínas/química , Proteínas/metabolismo , Análise Espectral Raman
14.
Philos Trans A Math Phys Eng Sci ; 379(2206): 20200338, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34334030

RESUMO

Certain organisms including species of mollusks, polychaetes, onychophorans and arthropods produce exceptional polymeric materials outside their bodies under ambient conditions using concentrated fluid protein precursors. While much is understood about the structure-function relationships that define the properties of such materials, comparatively less is understood about how such materials are fabricated and specifically, how their defining hierarchical structures are achieved via bottom-up assembly. Yet this information holds great potential for inspiring sustainable manufacture of advanced polymeric materials with controlled multi-scale structure. In the present perspective, we first examine recent work elucidating the formation of the tough adhesive fibres of the mussel byssus via secretion of vesicles filled with condensed liquid protein phases (coacervates and liquid crystals)-highlighting which design principles are relevant for bio-inspiration. In the second part of the perspective, we examine the potential of recent advances in drops and additive manufacturing as a bioinspired platform for mimicking such processes to produce hierarchically structured materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.


Assuntos
Polímeros , Proteínas
15.
ACS Nano ; 15(4): 6829-6838, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33793207

RESUMO

Protein-based biological materials are important role models for the design and fabrication of next generation advanced polymers. Marine mussels (Mytilus spp.) fabricate hierarchically structured collagenous fibers known as byssal threads via bottom-up supramolecular assembly of fluid protein precursors. The high degree of structural organization in byssal threads is intimately linked to their exceptional toughness and self-healing capacity. Here, we investigated the hypothesis that multidomain collagen precursor proteins, known as preCols, are stored in secretory vesicles as a colloidal liquid crystal (LC) phase prior to thread self-assembly. Using advanced electron microscopy methods, including scanning TEM and FIB-SEM, we visualized the detailed smectic preCol LC nanostructure in 3D, including various LC defects, confirming this hypothesis and providing quantitative insights into the mesophase structure. In light of these findings, we performed an in-depth comparative analysis of preCol protein sequences from multiple Mytilid species revealing that the smectic organization arises from an evolutionarily conserved ABCBA pentablock copolymer-like primary structure based on demarcations in hydropathy and charge distribution as well as terminal pH-responsive domains that trigger fiber formation. These distilled supramolecular assembly principles provide inspiration and strategies for sustainable assembly of nanostructured polymeric materials for potential applications in engineering and biomedical applications.


Assuntos
Bivalves , Cristais Líquidos , Mytilus , Sequência de Aminoácidos , Animais , Carboidratos , Colágeno
16.
ACS Biomater Sci Eng ; 6(10): 5377-5398, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320564

RESUMO

The functions of secreted animal mucuses are remarkably diverse and include lubricants, wet adhesives, protective barriers, and mineralizing agents. Although present in all animals, many open questions related to the hierarchical architectures, material properties, and genetics of mucus remain. Here, we summarize what is known about secreted mucus structure, describe the work of research groups throughout the world who are investigating various animal mucuses, and relate how these studies are revealing new mucus properties and the relationships between mucus hierarchical structure and hydrogel function. Finally, we call for a more systematic approach to studying animal mucuses so that data sets can be compared, omics-style, to address unanswered questions in the emerging field of mucomics. One major result that we anticipate from these efforts is design rules for creating new materials that are inspired by the structures and functions of animal mucuses.


Assuntos
Adesivos , Muco , Animais , Biopolímeros
17.
Acta Biomater ; 111: 290-301, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32438110

RESUMO

Biological organisms produce high-performance composite materials, such as bone, wood and insect cuticle, which provide inspiration for the design of novel materials. Ascidians (sea squirts) produce an organic exoskeleton, known as a tunic, which has been studied quite extensively in several species. However, currently, there are still gaps in our knowledge about the detailed structure and composition of this cellulosic biocomposite. Here, we investigate the composition and hierarchical structure of the tough tunic from the species Halocynthia roretzi, through a cross-disciplinary approach combining traditional histology, immunohistochemistry, vibrational spectroscopy, X-ray diffraction, and atomic force and electron microscopies. The picture emerging is that the tunic of H. roretzi is a hierarchically-structured composite of cellulose and proteins with several compositionally and structurally distinct zones. At the surface is a thin sclerotized cuticular layer with elevated composition of protein containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised primarily of helicoidally-ordered crystalline cellulose fibres with a lower protein content. The subcuticular zone directly beneath the surface contains much less organized cellulose fibres. Given current efforts to utilize biorenewable cellulose sources for the sustainable production of bio-inspired composites, these insights establish the tunic of H. roretzi as an exciting new archetype for extracting relevant design principles. STATEMENT OF SIGNIFICANCE: Tunicates are the only animals able to produce cellulose. They use this structural polysaccharide to build an exoskeleton called a tunic. Here, we investigate the composition and hierarchical structure of the tough tunic from the sea pineapple Halocynthia roretzi through a multiscale cross-disciplinary approach. The tunic of this species is a composite of cellulose and proteins with two distinct layers. At the surface is a thin sclerotized cuticular layer with a higher protein content containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised of well-ordered cellulose fibres with a lower protein content. Given current efforts to utilize cellulose to produce advanced materials, the tunic of the sea pineapple provides a striking model for the design of bio-inspired cellulosic composites.


Assuntos
Ananas , Kinetoplastida , Urocordados , Animais , Materiais Biocompatíveis , Celulose
18.
Nat Commun ; 11(1): 1696, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235832

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Proc Natl Acad Sci U S A ; 117(14): 7613-7621, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209666

RESUMO

Inspired largely by the role of the posttranslationally modified amino acid dopa (DOPA) in mussel adhesion, catechol functional groups have become commonplace in medical adhesives, tissue scaffolds, and advanced smart polymers. Yet, the complex redox chemistry of catechol groups complicates cross-link regulation, hampering fabrication and the long-term stability/performance of mussel-inspired polymers. Here, we investigated the various fates of DOPA residues in proteins comprising mussel byssus fibers before, during, and after protein secretion. Utilizing a combination of histological staining and confocal Raman spectroscopy on native tissues, as well as peptide-based cross-linking studies, we have identified at least two distinct DOPA-based cross-linking pathways during byssus fabrication, achieved by oxidative covalent cross-linking or formation of metal coordination interactions under reducing conditions, respectively. We suggest that these end states are spatiotemporally regulated by the microenvironments in which the proteins are stored prior to secretion, which are retained after formation-in particular, due to the presence of reducing moieties. These findings provide physicochemical pathways toward greater control over properties of synthetic catechol-based polymers and adhesives.


Assuntos
Bivalves/metabolismo , Catecóis/metabolismo , Di-Hidroxifenilalanina/metabolismo , Sequência de Aminoácidos , Animais , Catecóis/química , Oxirredução , Peptídeos/química , Peptídeos/metabolismo
20.
Nat Commun ; 11(1): 862, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054841

RESUMO

Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle's function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function.


Assuntos
Materiais Revestidos Biocompatíveis/química , Metaloproteínas/química , Mytilus edulis/química , Estruturas Animais/anatomia & histologia , Estruturas Animais/química , Estruturas Animais/ultraestrutura , Animais , Di-Hidroxifenilalanina/química , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mytilus edulis/anatomia & histologia , Mytilus edulis/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Vesículas Secretórias/química , Vesículas Secretórias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...