Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Alzheimers Dement ; 19(2): 391-404, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35416404

RESUMO

We propose the hypothesis that small high-density lipoprotein (HDL) particles reduce the risk of Alzheimer's disease (AD) by virtue of their capacity to exchange lipids, affecting neuronal membrane composition and vascular and synaptic functions. Concentrations of small HDLs in cerebrospinal fluid (CSF) and plasma were measured in 180 individuals ≥60 years of age using ion mobility methodology. Small HDL concentrations in CSF were positively associated with performance in three domains of cognitive function independent of apolipoprotein E (APOE) ε4 status, age, sex, and years of education. Moreover, there was a significant correlation between levels of small HDLs in CSF and plasma. Further studies will be aimed at determining whether specific components of small HDL exchange across the blood, brain, and CSF barriers, and developing approaches to exploit small HDLs for therapeutic purposes.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Apolipoproteínas E , Apolipoproteína E4 , Encéfalo , Cognição , Peptídeos beta-Amiloides/líquido cefalorraquidiano
2.
Alzheimers Dement ; 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479795

RESUMO

Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.

3.
J Alzheimers Dis ; 87(2): 609-617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367966

RESUMO

BACKGROUND: Mechanistic studies in animal models implicate a role for saturated fatty acids in neurodegeneration, but validation of this finding in human studies is still lacking. OBJECTIVE: We investigated how cerebrospinal levels of sphingomyelins (SM) and phosphatidylcholine (PC)-containing saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids associate with total tau and phosphorylated tau (p-tau). METHODS: Cerebrospinal fluid (CSF) lipids were measured in two cohorts, a discovery and a confirmation cohort of older non-demented individuals from the University of Southern California and Huntington Medical Research Institutes cohorts. Lipid analysis was performed using hydrophilic interaction liquid chromatography, and individual PC and SM lipid species were measured using tandem mass spectrometry. In addition, CSF levels of Aß42, total tau, and p-tau-181 were measured using an MSD multiplex assay. RESULTS: The discovery cohort (n = 47) consisted of older individuals and more females compared to the confirmation cohort (n = 46). Notwithstanding the age and gender differences, and a higher p-tau, Aß42, and LDL-cholesterol in the discovery cohort, CSF concentrations of dipalmitoyl-PC (PC32a:0) were significantly associated with p-tau in both cohorts. Similarly, total saturated PC but not mono or polyunsaturated PCs correlated with p-tau concentrations in both cohorts. CONCLUSION: Saturated PC species in CSF associate with early markers of neurodegeneration and are potential early disease progression biomarkers. We propose mechanisms by which saturated PC may promote tau hyperphosphorylation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Biomarcadores/líquido cefalorraquidiano , Ácidos Graxos , Feminino , Humanos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fosfatidilcolinas , Fosforilação , Esfingomielinas , Proteínas tau/líquido cefalorraquidiano
4.
Neurobiol Aging ; 112: 87-101, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35066324

RESUMO

Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Humanos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Teste de Stroop , Proteínas tau/líquido cefalorraquidiano
5.
Int J Psychophysiol ; 170: 102-111, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666107

RESUMO

Electroencephalographic (EEG) alpha oscillations have been related to heart rate variability (HRV) and both change in Alzheimer's disease (AD). We explored if task switching reveals altered alpha power and HRV in cognitively healthy individuals with AD pathology in cerebrospinal fluid (CSF) and whether HRV improves the AD pathology classification by alpha power alone. We compared low and high alpha event-related desynchronization (ERD) and HRV parameters during task switch testing between two groups of cognitively healthy participants classified by CSF amyloid/tau ratio: normal (CH-NAT, n = 19) or pathological (CH-PAT, n = 27). For the task switching paradigm, participants were required to name the color or word for each colored word stimulus, with two sequential stimuli per trial. Trials include color (cC) or word (wW) repeats with low load repeating, and word (cW) or color switch (wC) for high load switching. HRV was assessed for RR interval, standard deviation of RR-intervals (SDNN) and root mean squared successive differences (RMSSD) in time domain, and low frequency (LF), high frequency (HF), and LF/HF ratio in frequency domain. Results showed that CH-PATs compared to CH-NATs presented: 1) increased (less negative) low alpha ERD during low load repeat trials and lower word switch cost (low alpha: p = 0.008, Cohen's d = -0.83, 95% confidence interval -1.44 to -0.22, and high alpha: p = 0.019, Cohen's d = -0.73, 95% confidence interval -1.34 to -0.13); 2) decreasing HRV from rest to task, suggesting hyper-activated sympatho-vagal responses. 3) CH-PATs classification by alpha ERD was improved by supplementing HRV signatures, supporting a potentially compromised brain-heart interoceptive regulation in CH-PATs. Further experiments are needed to validate these findings for clinical significance.


Assuntos
Doença de Alzheimer , Encéfalo , Eletroencefalografia , Frequência Cardíaca , Humanos , Projetos Piloto
6.
Front Mol Neurosci ; 14: 691733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531722

RESUMO

BACKGROUND: Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. METHODS: We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. RESULTS: Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. CONCLUSIONS: Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.

7.
PLoS One ; 16(7): e0254332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292973

RESUMO

We hypothesized that automated assessment of brain volumes on MRI can predict presence of cerebrospinal fluid abnormal ß-amyloid42 and Tau protein levels and thus serve as a useful screening test for possible Alzheimer's disease. 113 participants ranging from cognitively healthy to Alzheimer's disease underwent MRI exams to obtain measurements of hippocampus, prefrontal cortex, precuneus, parietal cortex, and occipital lobe volumes. A non-exclusive subset (n = 107) consented to lumbar punctures to obtain cerebrospinal fluid for ß-amyloid42 and Tau protein assessment including cognitively health (n = 75), mild cognitively impaired (n = 22), and Alzheimer's disease (n = 10). After adjustment for false discovery rate, ß-amyloid42 was significantly associated with volumes in the hippocampus (p = 0.043), prefrontal cortex (p = 0.010), precuneus (p = 0.024), and the posterior cingulate (p = 0.002). No association between Tau levels and regional brain volume survived multiple test correction. Secondary analysis was performed to determine associations between MRI brain volumes and CSF protein levels to neuropsychological impairment. A non-exclusive subset (n = 96) including cognitively healthy (n = 72), mild cognitively impaired (n = 21), and Alzheimer's disease (n = 3) participants underwent Stroop Interference and Boston Naming neuropsychological testing. A higher score on the Boston Naming Test was optimally predicted in a selective regression model by greater hippocampus volume (p = 0.002), a higher ratio of ß-amyloid42 to Tau protein levels (p < 0.001), greater posterior cingulate volume (p = 0.0193), age (p = 0.0271), and a higher education level (p = 0.002). A better performance on the Stroop Interference Test was optimally predicted by greater hippocampus volume (p = 0.0003) and a higher education level (p < 0.001). Lastly, impaired cognitive status (mild cognitive impairment and Alzheimer's Disease) was optimally predicted in a selective regression model by a worse performance on the Stroop Interference Test (p < 0.001), a worse performance on the Boston Naming Test (p < 0.001), along with lower prefrontal cortex volume (p = 0.002) and lower hippocampus volume (p = 0.007).


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo , Imageamento por Ressonância Magnética , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Estudos Transversais , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Tamanho do Órgão
8.
Alzheimers Dement ; 17(9): 1528-1553, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860614

RESUMO

The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.


Assuntos
Doença de Alzheimer/fisiopatologia , Ensaios Clínicos como Assunto , Eletroencefalografia/normas , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Humanos
9.
Headache ; 61(3): 536-545, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33724462

RESUMO

OBJECTIVE: Our objective is to explore whether blood-cerebrospinal fluid (CSF) barrier biomarkers differ in episodic migraine (EM) or chronic migraine (CM) from controls. BACKGROUND: Reports of blood-brain barrier and blood-cerebrospinal fluid barrier (BCSFB) disruption in migraine vary. Our hypothesis is that investigation of biomarkers associated with blood, CSF, brain, cell adhesion, and inflammation will help elucidate migraine pathophysiology. METHODS: We recruited 14 control volunteers without headache disorders and 42 individuals with EM or CM as classified using the International Classification of Headache Disorders, 3rd edition, criteria in a cross-sectional study located at our Pasadena and Stanford headache research centers in California. Blood and lumbar CSF samples were collected once from those diagnosed with CM or those with EM during two states: during a typical migraine, before rescue therapy, with at least 6/10 level of pain (ictal); and when migraine free for at least 48 h (interictal). The average number of headaches per month over the previous year was estimated by those with EM; this enabled comparison of biomarker changes between controls and three headache frequency groups: <2 per month, 2-14 per month, and CM. Blood and CSF biomarkers were determined using antibody-based methods. RESULTS: Antimigraine medication was only taken by the EM and CM groups. Compared to controls, the migraine group had significantly higher mean CSF-blood quotients of albumin (Qalb : mean ± standard deviation (SD): 5.6 ± 2.3 vs. 4.1 ± 1.9) and fibrinogen (Qfib mean ± SD: 1615 ± 99.0 vs. 86.1 ± 55.0). Mean CSF but not plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were significantly higher in those with more frequent migraine: (4.5 ng/mL ± 1.1 in those with <2 headache days a month; 5.5 ± 1.9 with 2-14 days a month; and 7.1 ± 2.9 in CM), while the Qfib ratio was inversely related to headache frequency. We did not find any difference in individuals with EM or CM from controls for CSF cell count, total protein, matrix metalloproteinase-9, soluble platelet-derived growth factor receptor ß, tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-6, IL-8, IL-10, or C-reactive protein. CONCLUSIONS: The higher Qalb and Qfib ratios may indicate that the transport of these blood-derived proteins is disturbed at the BCSFB in persons with migraine. These changes most likely occur at the choroid plexus epithelium, as there are no signs of typical endothelial barrier disruption. The most striking finding in this hypothesis-generating study of migraine pathophysiology is that sVCAM-1 levels in CSF may be a biomarker of higher frequency of migraine and CM. An effect from migraine medications cannot be excluded, but there is no known mechanism to suggest they have a role in altering the CSF biomarkers.


Assuntos
Barreira Hematoencefálica , Fibrinogênio/líquido cefalorraquidiano , Inflamação , Transtornos de Enxaqueca , Molécula 1 de Adesão de Célula Vascular/líquido cefalorraquidiano , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , Feminino , Humanos , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/sangue , Transtornos de Enxaqueca/líquido cefalorraquidiano , Transtornos de Enxaqueca/fisiopatologia
10.
Sci Rep ; 11(1): 6344, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737516

RESUMO

The current study evaluated retinal function using electroretinography (ERG) in cognitively healthy (CH) participants with preclinical Alzheimer's disease (AD), as classified by cerebral spinal fluid (CSF) Aß42/Tau ratio. Individuals with normal retinal morphology ascertained by spectral-domain optical coherence tomography were enrolled. Full-field ERG, pattern PERG, and photopic negative response (PhNR) were performed in 29 adult participants (58 eyes). Amplitude and implicit times of the ERG wave components were analyzed. Preclinical AD participants showed marked retinal ganglion cell dysfunction relative to controls. The PhNR was significantly diminished in preclinical AD relative to controls. PhNR amplitude and N95 implicit time differentiated CH individuals with CSF biomarkers of AD pathology with 87% sensitivity and 82% specificity. These quantitative electrophysiologic findings expand our understanding of early retinal functional changes that precede cognitive decline in AD. Retinal ganglion cell dysfunction, as detected by ERG, may be a clinically useful, non-invasive in vivo biomarker for early disease detection, which is necessary for ultimately pursuing early intervention.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Retina/diagnóstico por imagem , Doenças Retinianas/diagnóstico por imagem , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Fenômenos Eletrofisiológicos , Eletrorretinografia , Humanos , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Testes Neuropsicológicos , Estimulação Luminosa , Retina/metabolismo , Retina/patologia , Doenças Retinianas/líquido cefalorraquidiano , Doenças Retinianas/complicações , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica , Campos Visuais
11.
J Neuroimaging ; 31(1): 186-191, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146918

RESUMO

BACKGROUND AND PURPOSE: Cirrhosis is associated with diffuse brain manganese deposition, which results in increased signal intensity (SI) in the brain on T1-weighted images, most often visualized in the globus pallidus. The purpose of this study was to determine if automated image intensity measurements can detect SI differences in the basal ganglia and other regions reported to have manganese deposition in patients with cirrhosis compared with controls. METHODS: T1 FSPGR images were acquired on 28 patients with cirrhosis and 28 age-sex-matched controls. FreeSurfer T1 SI values were obtained for the globus pallidus, putamen, cerebral white matter, cerebral cortex, and brainstem. SI ratios were computed for globus pallidus normalized to white matter and brainstem. SI values and SI ratios were compared between groups using t-tests. RESULTS: Among people with cirrhosis, T1 SI was significantly increased in the globus pallidus, putamen, cerebral white matter, cerebral cortex, and brainstem (P< .001), and the globus pallidus to brainstem ratio was significantly increased (P< .001). No significant difference was seen for globus pallidus to cerebral white matter T1 SI ratio (P = .38). CONCLUSIONS: Automatic assessment of T1 SI allows for rapid, objective identification of widespread T1 shortening associated with manganese deposition in cirrhosis, consistent with the global deposition of neurotoxic manganese seen in pathology studies. This automated T1 assessment may have broader utility for other conditions beyond cirrhosis impacting T1 SI.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fibrose/diagnóstico por imagem , Fibrose/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Manganês/metabolismo , Adulto , Automação , Encéfalo/patologia , Difusão , Fibrose/patologia , Humanos , Masculino , Pessoa de Meia-Idade
12.
Front Aging Neurosci ; 12: 574214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192465

RESUMO

Research shows that gamma activity changes in Alzheimer's disease (AD), revealing synaptic pathology and potential therapeutic applications. We aim to explore whether cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal gamma frequency power in healthy individuals at high risk of developing AD. We analyzed low (30-50 Hz) and high gamma (50-80 Hz) power over six brain regions at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in a dataset collected from an aging cohort during N-back working memory (WM) testing at two different load conditions (N = 0 or 2). Cognitively healthy (CH) study participants (≥60 years old) of both sexes were divided into two subgroups: normal amyloid/tau ratios (CH-NAT, n = 10) or pathological amyloid/tau (CH-PAT, n = 14) in cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher in CH-PATs than CH-NATs over frontal and central regions (p = 0.014∼0.032, effect size (Cohen's d) = 0.95∼1.11). However, during high load (2-back) challenge, low gamma is lower in CH-PATs compared to CH-NATs over the left temporal region (p = 0.045, Cohen's d = -0.96), and high gamma is lower over the parietal region (p = 0.035, Cohen's d = -1.02). Overall, our studies show a medium to large negative effect size across the scalp (Cohen's d = -0.51∼-1.02). In addition, low gamma during 2-back is positively correlated with 0-back accuracy over all regions except the occipital region only in CH-NATs (r = 0.69∼0.77, p = 0.0098∼0.027); high gamma during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs (r = 0.68∼0.78, p = 0.007∼0.030); high gamma during 2-back negatively correlated with 0-back response time over parietal, right temporal, and occipital regions in CH-NATs (r = -0.70∼-0.66, p = 0.025∼0.037). We interpret these preliminary results to show: (1) gamma power is compromised in AD-biomarker positive individuals, who are otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot findings encourage further investigations in combining cognitive challenges and qEEG in developing neurophysiology-based markers for identifying individuals in the prodromal stage, to help improving our understanding of AD pathophysiology and the contributions of low- and high-frequency gamma oscillations in cognitive functions.

14.
EBioMedicine ; 59: 102883, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32690472

RESUMO

BACKGROUND: Past clinical trials of docosahexaenoic Acid (DHA) supplements for the prevention of Alzheimer's disease (AD) dementia have used lower doses and have been largely negative. We hypothesized that larger doses of DHA are needed for adequate brain bioavailability and that APOE4 is associated with reduced delivery of DHA and eicosapentaenoic acid (EPA) to the brain before the onset of cognitive impairment. METHODS: 33 individuals were provided with a vitamin B complex (1 mg vitamin B12, 100 mg of vitamin B6 and 800 mcg of folic acid per day) and randomized to 2,152 mg of DHA per day or placebo over 6 months. 26 individuals completed both lumbar punctures and MRIs, and 29 completed cognitive assessments at baseline and 6 months. The primary outcome was the change in CSF DHA. Secondary outcomes included changes in CSF EPA levels, MRI hippocampal volume and entorhinal thickness; exploratory outcomes were measures of cognition. FINDINGS: A 28% increase in CSF DHA and 43% increase in CSF EPA were observed in the DHA treatment arm compared to placebo (mean difference for DHA (95% CI): 0.08 µg/mL (0.05, 0.10), p<0.0001; mean difference for EPA: 0.008 µg/mL (0.004, 0.011), p<0.0001). The increase in CSF EPA in non-APOE4 carriers after supplementation was three times greater than APOE4 carriers. The change in brain volumes and cognitive scores did not differ between groups. INTERPRETATION: Dementia prevention trials using omega-3 supplementation doses equal or lower to 1 g per day may have reduced brain effects, particularly in APOE4 carriers. TRIAL REGISTRATION: NCT02541929. FUNDING: HNY was supported by R01AG055770, R01AG054434, R01AG067063 from the National Institute of Aging and NIRG-15-361854 from the Alzheimer's Association, and MGH by the L. K. Whittier Foundation. This work was also supported by P50AG05142 (HCC) from the National Institutes of Health. Funders had no role in study design, data collection, data analysis, interpretation, or writing of the report.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/etiologia , Doença de Alzheimer/psicologia , Apolipoproteína E4/genética , Cognição/efeitos dos fármacos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
16.
Nature ; 581(7806): 71-76, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32376954

RESUMO

Vascular contributions to dementia and Alzheimer's disease are increasingly recognized1-6. Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction7, including the early clinical stages of Alzheimer's disease5,8-10. The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer's disease11-14, leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes15-19, which maintain BBB integrity20-22. It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the ε3/ε4 or ε4/ε4 alleles) are distinguished from those without APOE4 (ε3/ε3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-ß or tau pathology measured in cerebrospinal fluid or by positron emission tomography23. High baseline levels of the BBB pericyte injury biomarker soluble PDGFRß7,8 in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-ß and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway19 in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer's disease pathology, and might be a therapeutic target in APOE4 carriers.


Assuntos
Apolipoproteína E4/genética , Barreira Hematoencefálica/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Capilares/patologia , Ciclofilina A/líquido cefalorraquidiano , Ciclofilina A/metabolismo , Feminino , Heterozigoto , Hipocampo/irrigação sanguínea , Humanos , Masculino , Metaloproteinase 9 da Matriz/líquido cefalorraquidiano , Metaloproteinase 9 da Matriz/metabolismo , Giro Para-Hipocampal/irrigação sanguínea , Pericitos/patologia , Tomografia por Emissão de Pósitrons , Receptor beta de Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Lobo Temporal/irrigação sanguínea , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
17.
PLoS One ; 15(5): e0232785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469871

RESUMO

BACKGROUND: Alzheimer's disease (AD) pathology precedes symptoms and its detection can identify at-risk individuals who may benefit from early treatment. Since the retinal nerve fiber layer (RNFL) is depleted in established AD, we tested whether its thickness can predict whether cognitively healthy (CH) individuals have a normal or pathological cerebrospinal fluid (CSF) Aß42 (A) and tau (T) ratio. METHODS: As part of an ongoing longitudinal study, we enrolled CH individuals, excluding those with cognitive impairment and significant ocular pathology. We classified the CH group into two sub-groups, normal (CH-NAT, n = 16) or pathological (CH-PAT, n = 27), using a logistic regression model from the CSF AT ratio that identified >85% of patients with a clinically probable AD diagnosis. Spectral-domain optical coherence tomography (OCT) was acquired for RNFL, ganglion cell-inner plexiform layer (GC-IPL), and macular thickness. Group differences were tested using mixed model repeated measures and a classification model derived using multiple logistic regression. RESULTS: Mean age (± standard deviation) in the CH-PAT group (n = 27; 75.2 ± 8.4 years) was similar (p = 0.50) to the CH-NAT group (n = 16; 74.1 ± 7.9 years). Mean RNFL (standard error) was thinner in the CH-PAT group by 9.8 (2.7) µm; p < 0.001. RNFL thickness classified CH-NAT vs. CH-PAT with 87% sensitivity and 56.3% specificity. CONCLUSIONS: Our retinal data predict which individuals have CSF biomarkers of AD pathology before cognitive deficits are detectable with 87% sensitivity. Such results from easy-to-acquire, objective and non-invasive measurements of the RNFL merit further study of OCT technology to monitor or screen for early AD pathology.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Disfunção Cognitiva/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Amiloidose/líquido cefalorraquidiano , Amiloidose/diagnóstico por imagem , Amiloidose/genética , Amiloidose/patologia , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Disco Óptico/diagnóstico por imagem , Disco Óptico/metabolismo , Disco Óptico/patologia , Retina/diagnóstico por imagem , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica , Proteínas tau/líquido cefalorraquidiano
18.
Alzheimers Dement ; 16(6): 821-830, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301266

RESUMO

INTRODUCTION: Blood-brain barrier (BBB) breakdown and loss of brain capillary pericytes contributes to cognitive impairment. Pericytes express platelet-derived growth factor receptor-ß (PDGFRß) that regulates brain angiogenesis and blood vessel stability. Elevated soluble PDGFRß (sPDGFRß) levels in cerebrospinal fluid (CSF) indicate pericyte injury and BBB breakdown, which is an early biomarker of human cognitive dysfunction. METHODS: A combination of reagents and conditions were tested, optimized, and validated on the Meso Scale Discovery electrochemiluminescence platform to develop a new sPDGFRß immunoassay that was used to measure sPDGFRß in human CSF from 147 individuals. RESULTS: We developed standard operating procedures for a highly sensitive and reproducible sPDGFRß immunoassay with a dynamic range from 100 to 26,000 pg/mL, and confirmed elevated CSF sPDGFRß levels in individuals with cognitive dysfunction. DISCUSSION: This assay could be applied at different laboratories to study brain pericytes and microvascular damage in relation to cognition in disorders associated with neurovascular and cognitive dysfunction.


Assuntos
Barreira Hematoencefálica/metabolismo , Disfunção Cognitiva/diagnóstico , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/patologia , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/patologia , Humanos , Pericitos/patologia , Sensibilidade e Especificidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-32116618

RESUMO

Cerebrospinal fluid (CSF) and brain tissue sodium levels increase during migraine. However, little is known regarding the underlying mechanisms of sodium homeostasis disturbance in the brain during the onset and propagation of migraine. Exploring the cause of sodium dysregulation in the brain is important, since correction of the altered sodium homeostasis could potentially treat migraine. Under the hypothesis that disturbances in sodium transport mechanisms at the blood-CSF barrier (BCSFB) and/or the blood-brain barrier (BBB) are the underlying cause of the elevated CSF and brain tissue sodium levels during migraines, we developed a mechanistic, differential equation model of a rat's brain to compare the significance of the BCSFB and the BBB in controlling CSF and brain tissue sodium levels. The model includes the ventricular system, subarachnoid space, brain tissue and blood. Sodium transport from blood to CSF across the BCSFB, and from blood to brain tissue across the BBB were modeled by influx permeability coefficients P BCSFB and P BBB , respectively, while sodium movement from CSF into blood across the BCSFB, and from brain tissue to blood across the BBB were modeled by efflux permeability coefficients P B C S F B ' and P B B B ' , respectively. We then performed a global sensitivity analysis to investigate the sensitivity of the ventricular CSF, subarachnoid CSF and brain tissue sodium concentrations to pathophysiological variations in P BCSFB , P BBB , P B C S F B ' and P B B B ' . Our results show that the ventricular CSF sodium concentration is highly influenced by perturbations of P BCSFB , and to a much lesser extent by perturbations of P B C S F B ' . Brain tissue and subarachnoid CSF sodium concentrations are more sensitive to pathophysiological variations of P BBB and P B B B ' than variations of P BCSFB and P B C S F B ' within 30 min of the onset of the perturbations. However, P BCSFB is the most sensitive model parameter, followed by P BBB and P B B B ' , in controlling brain tissue and subarachnoid CSF sodium levels within 3 h of the perturbation onset.

20.
Front Physiol ; 11: 83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116789

RESUMO

Alzheimer's disease (AD) pathology is characterized by an early and prolonged decrease in the amyloid peptide (Aß) levels concomitant with a later increase in phospho-tau concentrations in cerebrospinal fluid (CSF). We propose that changes in lipid metabolism can contribute to the abnormal processing of Aß42 in AD. Our aim was to determine if polyunsaturated fatty acid (PUFA) metabolism can differentiate pre-symptomatic AD from normal aging and symptomatic AD. Using neuropsychology measures and Aß42/T-tau in cerebrospinal fluid (CSF), we classify three groups of elderly study participants: cognitively healthy with normal Aß42/T-tau (CH-NAT), cognitively healthy with pathological Aß42/T-tau (CH-PAT), and AD individuals. We determined the size distribution and the concentration of CSF particles using light scattering and quantified PUFA composition in the nanoparticulate (NP) fraction, supernatant fluid (SF), and unesterified PUFA levels using gas chromatography combined with mass spectrometry. Four PUFAs (C20:2n-6, C20:3n-3, C22:4n-6, C22:5n-3) were enriched in NP of AD compared with CH-NAT. C20:3n-3 levels were higher in the NP fraction from AD compared with CH-PAT. When normalized to the number of NPs in CSF, PUFA levels were significantly higher in CH-NAT and CH-PAT compared with AD. In the SF fractions, only the levels of docosahexaenoic acid (DHA, C22:6n-3) differentiated all three clinical groups. Unesterified DHA was also higher in CH-NAT compared with the other clinical groups. Our studies also show that NP PUFAs in CH participants negatively correlate with CSF Aß42 while C20:4n-6, DHA, and n-3 PUFAs in the SF fraction positively correlate with T-tau. The profile of PUFAs in different CSF fractions that correlate with Aß42 or with T-tau are different for CH-NAT compared with CH-PAT. These studies show that PUFA metabolism is associated with amyloid and tau processing. Importantly, higher PUFA levels in the cognitively healthy study participants with abnormal Aß42/T-tau suggest that PUFA enhances the cognitive resilience of the pre-symptomatic AD population. We propose that interventions that prevent PUFA depletion in the brain may prevent AD pathology by stabilizing Aß42 and tau metabolism. Further studies to determine changes in PUFA composition during the progression from pre-symptomatic to AD should reveal novel biomarkers and potential preventive approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...