Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(8): e0134927, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26287487

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.


Assuntos
ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Dieta Ocidental/efeitos adversos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Condicionamento Físico Animal/fisiologia , ADP-Ribosil Ciclase/metabolismo , Animais , ADP-Ribose Cíclica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , NAD/metabolismo , Oxirredução
2.
PPAR Res ; 2007: 97125, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17710237

RESUMO

Activation of peroxisome proliferator-activated receptor (PPAR) alpha, delta, and gamma subtypes increases expression of genes involved in fatty acid transport and oxidation and alters adiposity in animal models of obesity and type-2 diabetes. PPARpan agonists which activate all three receptor subtypes have antidiabetic activity in animal models without the weight gain associated with selective PPARgamma agonists. Herein we report the effects of selective PPAR agonists (GW9578, a PPARalpha agonist, GW0742, a PPARdelta agonist, GW7845, a PPARgamma agonist), combination of PPARalpha and delta agonists, and PPARpan (PPARalpha/gamma/delta) activators (GW4148 or GW9135) on body weight (BW), body composition, food consumption, fatty acid oxidation, and serum chemistry of diet-induced obese AKR/J mice. PPARalpha or PPARdelta agonist treatment induced a slight decrease in fat mass (FM) while a PPARgamma agonist increased BW and FM commensurate with increased food consumption. The reduction in BW and food intake after cotreatment with PPARalpha and delta agonists appeared to be synergistic. GW4148, a PPARpan agonist, induced a significant and sustained reduction in BW and FM similar to an efficacious dose of rimonabant, an antiobesity compound. GW9135, a PPARpan agonist with weak activity at PPARdelta, induced weight loss initially followed by rebound weight gain reaching vehicle control levels by the end of the experiment. We conclude that PPARalpha and PPARdelta activations are critical to effective weight loss induction. These results suggest that the PPARpan compounds may be expected to maintain the beneficial insulin sensitization effects of a PPARgamma agonist while either maintaining weight or producing weight loss.

3.
Am J Physiol Gastrointest Liver Physiol ; 291(5): G902-11, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16798724

RESUMO

The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.


Assuntos
Cirrose Hepática/metabolismo , PPAR gama/metabolismo , Adenoviridae/genética , Animais , Antimetabólitos , Bromodesoxiuridina , Separação Celular , DNA/biossíntese , DNA/genética , Ensaio de Imunoadsorção Enzimática , Genes Reporter/genética , Hidroxiprolina/metabolismo , Immunoblotting , Imuno-Histoquímica , Técnicas In Vitro , Ligantes , Fígado/patologia , Cirrose Hepática/patologia , Testes de Função Hepática , Masculino , PPAR gama/biossíntese , Fenótipo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fator de Crescimento Transformador beta1/metabolismo
4.
J Pharmacol Exp Ther ; 312(2): 718-25, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15475592

RESUMO

Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists have been shown to have significant therapeutic benefits such as desirable glycemic control in type 2 diabetic patients; however, these agents may cause fluid retention in susceptible individuals. Since PPARgamma is expressed selectively in distal nephron epithelium, we studied the mechanism of PPARgamma agonist-induced fluid retention using male Sprague-Dawley rats treated with either vehicle or GI262570 (farglitazar), a potent PPARgamma agonist. GI262570 (20 mg/kg/day) induced a plasma volume expansion. The plasma volume expansion was accompanied by a small but significant decrease in plasma potassium concentration. Small but significant increases in plasma sodium and chloride concentrations were also observed. These changes in serum electrolytes suggested an activation of the renal mineralocorticoid response system; however, GI262570-treated rats had lower plasma levels of aldosterone compared with vehicle-treated controls. mRNA levels for a group of genes involved in distal nephron sodium and water absorption are changed in the kidney medulla with GI262570 treatment. In addition, due to a possible rebound effect on epithelial sodium channel (ENaC) activity, a low dose of amiloride did not prevent GI262570-induced fluid retention. On the contrary, the rebound effect after amiloride treatment potentiated GI262570-induced plasma volume expansion. This is at least partially due to a synergistic effect of GI262570 and the rebound from amiloride treatment on ENaCalpha expression. In summary, our current data suggest that GI262570 can increase water and sodium reabsorption in distal nephron by stimulating the ENaC and Na,K-ATPase system. This may be an important mechanism for PPARgamma agonist-induced fluid retention.


Assuntos
Eletrólitos/metabolismo , Túbulos Renais Distais/metabolismo , Néfrons/metabolismo , Oxazóis/farmacologia , PPAR gama/agonistas , Tirosina/análogos & derivados , Tirosina/farmacologia , Água/metabolismo , Actinas/biossíntese , Aldosterona/sangue , Amilorida/farmacologia , Animais , Volume Sanguíneo/efeitos dos fármacos , Diuréticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio , Expressão Gênica/efeitos dos fármacos , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Túbulos Renais Distais/citologia , Túbulos Renais Distais/efeitos dos fármacos , Masculino , Néfrons/citologia , Néfrons/efeitos dos fármacos , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Canais de Sódio/biossíntese , Canais de Sódio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA