Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
1.
PLoS Comput Biol ; 20(3): e1011944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489376

RESUMO

Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors. On the other hand, there is evidence that oxygenated tumour cells could be fuelled by exogenous lactate produced from glycolysis. We employed a multi-scale approach that integrates multi-agent modelling, diffusion-reaction, stoichiometric equations, and Boolean networks to study metabolic cooperation between hypoxic and oxygenated cells exposed to varying oxygen, nutrient, and inhibitor concentrations. The results show that the cooperation reduces the depletion of environmental glucose, resulting in an overall advantage of using aerobic glycolysis. In addition, the oxygen level was found to be decreased by symbiosis, promoting a further shift towards anaerobic glycolysis. However, the oxygenated and hypoxic populations may gradually reach quasi-equilibrium. A sensitivity analysis using Latin hypercube sampling and partial rank correlation shows that the symbiotic dynamics depends on properties of the specific cell such as the minimum glucose level needed for glycolysis. Our results suggest that strategies that block glucose transporters may be more effective to reduce tumour growth than those blocking lactate intake transporters.


Assuntos
Neoplasias , Simbiose , Humanos , Glicólise , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Glucose/metabolismo , Hipóxia , Oxigênio
2.
Sci Rep ; 14(1): 7270, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538606

RESUMO

Cancer risk is associated with the widely debated measure body mass index (BMI). Fat mass and fat-free mass measurements from bioelectrical impedance may further clarify this association. The UK Biobank is a rare resource in which bioelectrical impedance and BMI data was collected on ~ 500,000 individuals. Using this dataset, a comprehensive analysis using regression, principal component and genome-wide genetic association, provided multiple levels of evidence that increasing whole body fat (WBFM) and fat-free mass (WBFFM) are both associated with increased post-menopausal breast cancer risk, and colorectal cancer risk in men. WBFM was inversely associated with prostate cancer. We also identified rs615029[T] and rs1485995[G] as associated in independent analyses with both PMBC (p = 1.56E-17 and 1.78E-11) and WBFFM (p = 2.88E-08 and 8.24E-12), highlighting splice variants of the intriguing long non-coding RNA CUPID1 (LINC01488) as a potential link between PMBC risk and fat-free mass.


Assuntos
Composição Corporal , Neoplasias , Masculino , Humanos , Composição Corporal/genética , Índice de Massa Corporal , Predisposição Genética para Doença , Neoplasias/etiologia , Neoplasias/genética , Impedância Elétrica
3.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326288

RESUMO

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Assuntos
Exossomos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Fenótipo
4.
Cancer Metab ; 12(1): 5, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350962

RESUMO

BACKGROUND: PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS: From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS: PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS: Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.

5.
iScience ; 27(1): 108763, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38261926

RESUMO

Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.

6.
Genome Med ; 15(1): 94, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946251

RESUMO

BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.


Assuntos
Variação Genética , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Testes Genéticos , Mutação , Proteínas de Ciclo Celular
7.
PLoS Genet ; 19(10): e1010979, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844085

RESUMO

Secretory cells in glands and the nervous system frequently package and store proteins destined for regulated secretion in dense-core granules (DCGs), which disperse when released from the cell surface. Despite the relevance of this dynamic process to diseases such as diabetes and human neurodegenerative disorders, our mechanistic understanding is relatively limited, because of the lack of good cell models to follow the nanoscale events involved. Here, we employ the prostate-like secondary cells (SCs) of the Drosophila male accessory gland to dissect the cell biology and genetics of DCG biogenesis. These cells contain unusually enlarged DCGs, which are assembled in compartments that also form secreted nanovesicles called exosomes. We demonstrate that known conserved regulators of DCG biogenesis, including the small G-protein Arf1 and the coatomer complex AP-1, play key roles in making SC DCGs. Using real-time imaging, we find that the aggregation events driving DCG biogenesis are accompanied by a change in the membrane-associated small Rab GTPases which are major regulators of membrane and protein trafficking in the secretory and endosomal systems. Indeed, a transition from trans-Golgi Rab6 to recycling endosomal protein Rab11, which requires conserved DCG regulators like AP-1, is essential for DCG and exosome biogenesis. Our data allow us to develop a model for DCG biogenesis that brings together several previously disparate observations concerning this process and highlights the importance of communication between the secretory and endosomal systems in controlling regulated secretion.


Assuntos
Proteínas de Drosophila , Exossomos , Animais , Humanos , Masculino , Vesículas de Núcleo Denso , Drosophila , Proteínas de Drosophila/genética , Exossomos/genética , Proteínas , Proteínas rab de Ligação ao GTP/genética , Fator de Transcrição AP-1
9.
Crit Rev Oncol Hematol ; 188: 104065, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392899

RESUMO

Despite advances in the therapy of Central Nervous System (CNS) malignancies, treatment of glioblastoma (GB) poses significant challenges due to GB resistance and high recurrence rates following post-operative radio-chemotherapy. The majority of prognostic and predictive GB biomarkers are currently developed using tumour samples obtained through surgical interventions. However, the selection criteria adopted by different neurosurgeons to determine which cases are suitable for surgery make operated patients not representative of all GB cases. Particularly, geriatric and frail individuals are excluded from surgical consideration in some cancer centers. Such selection generates a survival (or selection) bias that introduces limitations, rendering the patients or data chosen for downstream analyses not representative of the entire community. In this review, we discuss the implication of survivorship bias on current and novel biomarkers for patient selection, stratification, therapy, and outcome analyses.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Idoso , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Dacarbazina , Sobrevivência , Metilação de DNA , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Prognóstico , Biomarcadores Tumorais/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/uso terapêutico
10.
Cancer Res ; 83(20): 3400-3413, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37463466

RESUMO

GTP cyclohydrolase (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis. The catalysis of BH4 biosynthesis is tightly regulated for physiological neurotransmission, inflammation, and vascular tone. Paradoxically, BH4 has emerged as an oncometabolite regulating tumor growth, but the effects on tumor development remain controversial. Here, we found that GCH1 potentiated the growth of triple-negative breast cancer (TNBC) and HER2+ breast cancer and transformed nontumor breast epithelial cells. Independent of BH4 production, GCH1 protein induced epithelial-to-mesenchymal transition by binding to vimentin (Vim), which was mediated by HSP90. Conversely, GCH1 ablation impaired tumor growth, suppressed Vim in TNBC, and inhibited EGFR/ERK signaling while activating the p53 pathway in estrogen receptor-positive tumor cells. GCH1 deficiency increases tumor cell sensitivity to HSP90 inhibition and endocrine treatments. In addition, high GCH1 correlated with poor breast cancer survival. Together, this study reveals an enzyme-independent oncogenic role of GCH1, presenting it as a potential target for therapeutic development. SIGNIFICANCE: GTP cyclohydrolase functions as an oncogene in breast cancer and binds vimentin to induce epithelial-to-mesenchymal transition independently of its enzyme activity, which confers targetable vulnerabilities for developing breast cancer treatment strategies.

11.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046583

RESUMO

Standard clinicopathological parameters (age, growth pattern, tumor size, margin status, and grade) have been shown to have limited value in predicting recurrence in ductal carcinoma in situ (DCIS) patients. Early and accurate recurrence prediction would facilitate a more aggressive treatment policy for high-risk patients (mastectomy or adjuvant radiation therapy), and simultaneously reduce over-treatment of low-risk patients. Generative adversarial networks (GAN) are a class of DL models in which two adversarial neural networks, generator and discriminator, compete with each other to generate high quality images. In this work, we have developed a deep learning (DL) classification network that predicts breast cancer events (BCEs) in DCIS patients using hematoxylin and eosin (H & E) images. The DL classification model was trained on 67 patients using image patches from the actual DCIS cores and GAN generated image patches to predict breast cancer events (BCEs). The hold-out validation dataset (n = 66) had an AUC of 0.82. Bayesian analysis further confirmed the independence of the model from classical clinicopathological parameters. DL models of H & E images may be used as a risk stratification strategy for DCIS patients to personalize therapy.

12.
J Extracell Vesicles ; 12(3): e12311, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36872252

RESUMO

Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Endossomos , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte
14.
Cancers (Basel) ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36765769

RESUMO

Newcastle disease virus (NDV) is an oncolytic agent against various types of mammalian cancers. As with all cancer therapies, the development of cancer resistance, both innate and acquired, is becoming a challenge. In this study, we investigated persistently NDV-infected Caco-2 colon cancer cells, designated as virus-resistant (VR) Caco-2 cells, which were then able to resist NDV-mediated oncolysis. We applied single-cell Raman spectroscopy, combined with deuterium isotope probing (Raman-DIP) techniques, to investigate the metabolic adaptations and dynamics in VR Caco-2 cells. A linear discriminant analysis (LDA) model demonstrated excellent performance in differentiating VR Caco-2 from Caco-2 cells at single-cell level. By comparing the metabolic profiles in a time-resolved manner, the de novo synthesis of proteins and lipids was found upregulated, along with decreased DNA synthesis in VR Caco-2. The results suggest that VR Caco-2 cells might reprogram their metabolism and divert energy from proliferation to protein synthesis and lipidic modulation. The ability to identify and characterise single resistant cells among a population of cancer cells would help develop a deeper understanding of the resistance mechanisms and better tactics for developing effective cancer treatment.

15.
Br J Cancer ; 128(3): 401, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36725919
16.
Br J Cancer ; 128(6): 958-966, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823364

RESUMO

Over the past 15 years, there has been great interest in the potential to repurpose the diabetes drug, metformin, as a cancer treatment. However, despite considerable efforts being made to investigate its efficacy in a number of large randomised clinical trials in different tumour types, results have been disappointing to date. This perspective article summarises how interest initially developed in the oncological potential of metformin and the diverse clinical programme of work to date including our contribution to establishing the intra-tumoral pharmacodynamic effects of metformin in the clinic. We also discuss the lessons that can be learnt from this experience and whether a further clinical investigation of metformin in cancer is warranted.


Assuntos
Metformina , Neoplasias , Humanos , Metformina/uso terapêutico , Reposicionamento de Medicamentos , Hipoglicemiantes/uso terapêutico , Neoplasias/tratamento farmacológico
18.
Cells ; 11(22)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429023

RESUMO

The HIF-1 and HIF-2 (HIF1/2) hypoxia responses are frequently upregulated in cancers, and HIF1/2 inhibitors are being developed as anticancer drugs. How could cancers resist anti-HIF1/2 therapy? We studied metabolic and molecular adaptations of HIF-1ß-deficient Hepa-1c4, a hepatoma model lacking HIF1/2 signalling, which mimics a cancer treated by a totally effective anti-HIF1/2 agent. [1,2-13C2]-D-glucose metabolism was measured by SiDMAP metabolic profiling, gene expression by TaqMan, and metabolite concentrations by 1H MRS. HIF-1ß-deficient Hepa-1c4 responded to hypoxia by increasing glucose uptake and lactate production. They showed higher glutamate, pyruvate dehydrogenase, citrate shuttle, and malonyl-CoA fluxes than normal Hepa-1 cells, whereas pyruvate carboxylase, TCA, and anaplerotic fluxes decreased. Hypoxic HIF-1ß-deficient Hepa-1c4 cells increased expression of PGC-1α, phospho-p38 MAPK, and PPARα, suggesting AMPK pathway activation to survive hypoxia. They had higher intracellular acetate, and secreted more H2O2, suggesting increased peroxisomal fatty acid ß-oxidation. Simultaneously increased fatty acid synthesis and degradation would have "wasted" ATP in Hepa-1c4 cells, thus raising the [AMP]:[ATP] ratio, and further contributing to the upregulation of the AMPK pathway. Since these tumour cells can proliferate without the HIF-1/2 pathways, combinations of HIF1/2 inhibitors with PGC-1α or AMPK inhibitors should be explored.


Assuntos
Proteínas Quinases Ativadas por AMP , Peróxido de Hidrogênio , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Hipóxia Celular/fisiologia , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Ácidos Graxos/metabolismo , Trifosfato de Adenosina/metabolismo
19.
Cancers (Basel) ; 14(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010908

RESUMO

Tumor-infiltrating lymphocytes (TILs) are prognostic in invasive breast cancer. However, their prognostic significance in ductal carcinoma in situ (DCIS) has been controversial. To investigate the prognostic role of TILs in DCIS outcome, we used different scoring methods for TILs in multi-national cohorts from Asian and European women. Self-described race was genetically confirmed using QC Infinium array combined with radmixture software. Stromal TILs, touching TILs, circumferential TILs, and hotspots were quantified on H&E-stained slides and correlated with the development of second breast cancer events (BCE) and other clinico-pathological variables. In univariate survival analysis, age older than 50 years, hormone receptor positivity and the presence of circumferential TILs were weakly associated with the absence of BCE at the 5-year follow-up in all cohorts (p < 0.03; p < 0.02; and p < 0.02, respectively, adjusted p = 0.11). In the multivariable analysis, circumferential TILs were an independent predictor of a better outcome (Wald test p = 0.01), whereas younger age was associated with BCE. Asian patients were younger with larger, higher grade, HR negative DCIS lesions, and higher TIL variables. The spatial arrangement of TILs may serve as a better prognostic indicator in DCIS cases than stromal TILs alone and may be added in guidelines for TILs evaluation in DCIS.

20.
Cancer Metastasis Rev ; 41(3): 491-515, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36038791

RESUMO

Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.


Assuntos
Carcinogênese , Neoplasias , Humanos , Neoplasias/metabolismo , Neovascularização Patológica/patologia , Obesidade/complicações , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...