Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cyst Fibros ; 23(1): 155-160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845149

RESUMO

BACKGROUND: The cystic fibrosis transmembrane conductance regulator (CFTR) modulator elexacaftor/tezacaftor/ivacaftor (E/T/I) is highly effective clinically for those with at least one F508del-CFTR allele. The effects of E/T/I on mucociliary clearance (MCC) and sputum properties are unknown. We, therefore, sought to characterize the effects of E/T/I on in vivo MCC and sputum characteristics hypothesized to impact mucus transport. METHODS: Forty-four participants ≥12 years of age were enrolled into this prospective, observational trial prior to initiation of E/T/I and had baseline measurement of MCC and characterization of induced sputum and exhaled breath condensate (EBC) samples. Study procedures were repeated after 1 month of E/T/I treatment. RESULTS: Average age was 27.7 years with baseline forced expiratory volume in 1 second (FEV1) of 78.2 % predicted. 52 % of subjects had previously been treated with a 2-drug CFTR modulator combination. The average whole lung MCC rate measured over 60 min (WLAveClr60) significantly improved from baseline to post-E/T/I (14.8 vs. 22.8 %; p = 0.0002), as did other MCC indices. Sputum% solids also improved (modeled mean 3.4 vs. 2.2 %; p<0.0001), whereas non-significant reductions in sputum macrorheology (G', G") were observed. No meaningful changes in exhaled breath condensate endpoints (sialic acid:urea ratio, pH) were observed. CONCLUSIONS: E/T/I improved the hydration of respiratory secretions (% solids) and markedly accelerated MCC. These data confirm the link between CFTR function, mucus solid content, and MCC and help to define the utility of MCC and mucus-related bioassays in future efforts to restore CFTR function in all people with CF.


Assuntos
Fibrose Cística , Indóis , Pirazóis , Piridinas , Pirrolidinas , Quinolonas , Humanos , Adulto , Fibrose Cística/diagnóstico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística , Depuração Mucociliar , Estudos Prospectivos , Aminofenóis/uso terapêutico , Benzodioxóis/uso terapêutico , Muco , Mutação , Agonistas dos Canais de Cloreto/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-37975554

RESUMO

INTRODUCTION: Cystic fibrosis (CF) airway disease is characterized by thick mucus and impaired mucociliary transport (MCT). Loss of functional cystic fibrosis transmembrane receptor (CFTR) leads to acidification and oxidation of airway surface mucus. Replacing bicarbonate (HCO3 - ) topically fails due to rapid reabsorption and neutralization, while the scavenging antioxidant, glutathione sulfhydryl (GSH), is also rapidly degraded. The objective of this study is to investigate GSH/NaHCO3 nanoparticles as novel strategy for CF airway disease. METHODS: GSH/NaHCO3 poly (lactic-co-glycolic acid) nanoparticles were tested on primary CF (F508del/F508del) epithelial cultures to evaluate dose-release curves, surface pH, toxicity, and MCT indices using micro-optical coherence tomography. In vivo tests were performed in three rabbits to assess safety and toxicity. After 1 week of daily injections, histopathology, computed tomography (CT), and blood chemistries were performed and compared to three controls. Fluorescent nanoparticles were injected into a rabbit with maxillary sinusitis and explants visualized with confocal microscopy. RESULTS: Sustained release of GSH and HCO3 - with no cellular toxicity was observed over 2 weeks. Apical surface pH gradually increased from 6.54 ± 0.13 (baseline) to 7.07 ± 0.10 (24 h) (p < 0.001) and 6.87 ± 0.05 at 14 days (p < 0.001). MCT, ciliary beat frequency, and periciliary liquid were significantly increased. When injected into the maxillary sinuses of rabbits, there were no changes to histology, CT, or blood chemistries. Nanoparticles penetrated rabbit sinusitis mucus on confocal microscopy. CONCLUSION: Findings suggest that GSH/NaHCO3 - nanoparticles are a promising treatment option for viscous mucus in CF and other respiratory diseases of mucus obstruction such as chronic rhinosinusitis.

3.
PLoS One ; 18(10): e0293367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37874846

RESUMO

Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.


Assuntos
Fibrose Cística , Suínos , Animais , Ratos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Traqueia/metabolismo , Transporte Biológico , Muco/metabolismo
4.
J Cyst Fibros ; 22(6): 1104-1112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714777

RESUMO

BACKGROUND: Mucus stasis, a hallmark of muco-obstructive disease, results from impaired mucociliary transport and leads to lung function decline and chronic infection. Although therapeutics that target mucus stasis in the airway, such as hypertonic saline or rhDNAse, show some therapeutic benefit, they do not address the underlying electrostatic defect apparent in mucins in CF and related conditions. We have previously shown poly (acetyl, arginyl) glucosamine (PAAG, developed as SNSP113), a soluble, cationic polymer, significantly improves mucociliary transport in a rat model of CF by normalizing the charge defects of CF mucin. Here, we report efficacy in the CFTR-sufficient, ENaC hyperactive, Scnn1b-Tg mouse model that develops airway muco-obstruction due to sodium hyperabsorption and airway dehydration. METHODS: Scnn1b-Tg mice were treated with either 250 µg/mL SNSP113 or vehicle control (1.38% glycerol in PBS) via nebulization once daily for 7 days and then euthanized for analysis. Micro-Optical Coherence Tomography-based evaluation of excised mouse trachea was used to determine the effect on the functional microanatomy. Tissue analysis was performed by routine histopathology. RESULTS: Nebulized treatment of SNSP113 significantly improved mucociliary transport in the airways of Scnn1b-Tg mice, without altering the airway surface or periciliary liquid layer. In addition, SNSP113 significantly reversed epithelial hypertrophy and goblet cell metaplasia. Finally, SNSP113 significantly ameliorated eosinophilic crystalline pneumonia and lung consolidation in addition to inflammatory macrophage influx in this model. CONCLUSION: Overall, this study extends the efficacy of SNSP113 as a potential therapeutic to alleviate mucus stasis in muco-obstructive diseases in CF and potentially in related conditions.


Assuntos
Obstrução das Vias Respiratórias , Fibrose Cística , alfa 2-Macroglobulinas Associadas à Gravidez , Feminino , Gravidez , Camundongos , Animais , Ratos , Depuração Mucociliar , Camundongos Transgênicos , Modelos Animais de Doenças , Camundongos Endogâmicos CFTR , Pulmão , Canais Epiteliais de Sódio/genética
5.
Sci Rep ; 13(1): 4898, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966182

RESUMO

An elevation in serum phosphate-also called hyperphosphatemia-is associated with reduced kidney function in chronic kidney disease (CKD). Reports show CKD patients are more likely to develop lung disease and have poorer kidney function that positively correlates with pulmonary obstruction. However, the underlying mechanisms are not well understood. Here, we report that two murine models of CKD, which both exhibit increased serum levels of phosphate and fibroblast growth factor (FGF) 23, a regulator of phosphate homeostasis, develop concomitant airway inflammation. Our in vitro studies point towards a similar increase of phosphate-induced inflammatory markers in human bronchial epithelial cells. FGF23 stimulation alone does not induce a proinflammatory response in the non-COPD bronchial epithelium and phosphate does not cause endogenous FGF23 release. Upregulation of the phosphate-induced proinflammatory cytokines is accompanied by activation of the extracellular-signal regulated kinase (ERK) pathway. Moreover, the addition of cigarette smoke extract (CSE) during phosphate treatments exacerbates inflammation as well as ERK activation, whereas co-treatment with FGF23 attenuates both the phosphate as well as the combined phosphate- and CS-induced inflammatory response, independent of ERK activation. Together, these data demonstrate a novel pathway that potentially explains pathological kidney-lung crosstalk with phosphate as a key mediator.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Fosfatos/metabolismo , Fumar Cigarros/efeitos adversos , Inflamação/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insuficiência Renal Crônica/complicações , Epitélio/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Células Epiteliais/metabolismo
6.
Front Immunol ; 12: 693149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290711

RESUMO

Chronic obstructive pulmonary disease (COPD) is a systemic disease strongly associated with cigarette smoking, airway inflammation, and acute disease exacerbations. Changes in terminal sialylation and fucosylation of asparagine (N)-linked glycans have been documented in COPD, but the role that glycosyltransferases may play in the regulation of N-linked glycans in COPD has not been fully elucidated. Recent studies suggest that modulation of ST6GAL1 (ST6 beta-galactoside alpha-2,6-sialyltransferase-1), which catalyzes terminal α2-6 sialylation of cellular proteins, may regulate inflammation and contribute to COPD phenotype(s). Interestingly, it has been previously demonstrated that ST6GAL1, a Golgi resident protein, can be proteolytically processed by BACE1 (beta-site amyloid precursor protein cleaving enzyme-1) to a circulating form that retains activity. In this study, we showed that loss of ST6GAL1 expression increased interleukin (IL)-6 expression and secretion in human bronchial epithelial cells (HBECs). Furthermore, exposure to cigarette smoke medium/extract (CSE) or BACE1 inhibition resulted in decreased ST6GAL1 secretion, reduced α2-6 sialylation, and increased IL-6 production in HBECs. Analysis of plasma ST6GAL1 levels in a small COPD patient cohort demonstrated an inverse association with prospective acute exacerbations of COPD (AECOPD), while IL-6 was positively associated. Altogether, these results suggest that reduced ST6GAL1 and α2-6 sialylation augments IL-6 expression/secretion in HBECs and is associated with poor clinical outcomes in COPD.


Assuntos
Antígenos CD/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Interleucina-6/metabolismo , Processamento de Proteína Pós-Traducional , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sialiltransferases/metabolismo , Idoso , Antígenos CD/sangue , Antígenos CD/genética , Biomarcadores/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Glicosilação , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/imunologia , Índice de Gravidade de Doença , Sialiltransferases/sangue , Sialiltransferases/genética , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade
7.
Front Med (Lausanne) ; 7: 317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793609

RESUMO

Fibroblast growth factor receptor (FGFR) 4 has been shown to mediate pro-inflammatory signaling in the liver and airway epithelium in chronic obstructive pulmonary disease. In past reports, FGFR4 knockout (Fgfr4 -/- ) mice did not show any lung phenotype developmentally or at birth, unless FGFR3 deficiency was present simultaneously. Therefore, we wanted to know whether the loss of FGFR4 had any effect on the adult murine lung. Our results indicate that adult Fgfr4 -/- mice demonstrate a lung phenotype consisting of widened airway spaces, increased airway inflammation, bronchial obstruction, and right ventricular hypertrophy consistent with emphysema. Despite downregulation of FGF23 serum levels, interleukin (IL) 1ß and IL-6 in the Fgfr4 -/- lung, and abrogation of p38 signaling, primary murine Fgfr4 -/- airway cells showed increased expression of IL-1ß and augmented secretion of IL-6, which correlated with decreased airway surface liquid depth as assessed by micro-optical coherence tomography. These findings were paralleled by increased ERK phosphorylation in Fgfr4 -/- airway cells when compared with their control wild-type cells. Analysis of a murine model with constitutive activation of FGFR4 showed attenuation of pro-inflammatory mediators in the lung and airway epithelium. In conclusion, we are the first to show an inflammatory and obstructive airway phenotype in the adult healthy murine Fgfr4 -/- lung, which might be due to the upregulation of ERK phosphorylation in the Fgfr4 -/- airway epithelium.

8.
Am J Physiol Lung Cell Mol Physiol ; 319(1): L11-L20, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374671

RESUMO

Structural changes to airway morphology, such as increased bronchial wall thickness (BWT) and airway wall area, are cardinal features of chronic obstructive pulmonary disease (COPD). Ferrets are a recently established animal model uniquely exhibiting similar clinical and pathological characteristics of COPD as humans, including chronic bronchitis. Our objective was to develop a microcomputed tomography (µCT) method for evaluating structural changes to the airways in ferrets and assess whether the effects of smoking induce changes consistent with chronic bronchitis in humans. Ferrets were exposed to mainstream cigarette smoke or air control twice daily for 6 mo. µCT was conducted in vivo at 6 mo; a longitudinal cohort was imaged monthly. Manual measurements of BWT, luminal diameter (LD), and BWT-to-LD ratio (BWT/LD) were conducted and confirmed by a semiautomated algorithm. The square root of bronchial wall area (√WA) versus luminal perimeter was determined on an individual ferret basis. Smoke-exposed ferrets reproducibly demonstrated 34% increased BWT (P < 0.001) along with increased LD and BWT/LD versus air controls. Regression indicated that the effect of smoking on BWT persisted despite controlling for covariates. Semiautomated measurements replicated findings. √WA for the theoretical median airway luminal perimeter of 4 mm (Pi4) was elevated 4.4% in smoke-exposed ferrets (P = 0.015). Increased BWT and Pi4 developed steadily over time. µCT-based airway measurements in ferrets are feasible and reproducible. Smoke-exposed ferrets develop increased BWT and Pi4, changes similar to humans with chronic bronchitis. µCT can be used as a significant translational platform to measure dynamic airway morphological changes.

9.
Front Med (Lausanne) ; 6: 339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039219

RESUMO

α-klotho (KL) is an anti-aging protein and has been shown to exert anti-inflammatory and anti-oxidative effects in the lung and pulmonary diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. The current study investigated the direct effect of KL on the bronchial epithelium in regards to mucociliary clearance parameters. Primary human bronchial and murine tracheal epithelial cells, cultured, and differentiated at the air liquid interface (ALI), were treated with recombinant KL or infected with a lentiviral vector expressing KL. Airway surface liquid (ASL) volume, airway ion channel activities, and expression levels were analyzed. These experiments were paired with ex vivo analyses of mucociliary clearance in murine tracheas from klotho deficient mice and their wild type littermates. Our results showed that klotho deficiency led to impaired mucociliary clearance with a reduction in ASL volume in vitro and ex vivo. Overexpression or exogenous KL increased ASL volume, which was paralleled by increased activation of the large-conductance, Ca2+-activated, voltage-dependent potassium channel (BK) without effect on the cystic fibrosis transmembrane conductance regulator (CFTR). Furthermore, KL overexpression downregulated IL-8 levels and attenuated TGF-ß-mediated downregulation of LRRC26, the γ subunit of BK, necessary for its function in non-excitable cells. In summary, we show that KL regulates mucociliary function by increasing ASL volume in the airways possibly due to underlying BK activation. The KL mediated BK channel activation may be a potentially important target to design therapeutic strategies in inflammatory airway diseases when ASL volume is decreased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...