Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Imaging Radiat Oncol ; 18: 68-77, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34258411

RESUMO

BACKGROUND AND PURPOSE: Transperineal ultrasound (TPUS) is used clinically for directly assessing prostate motion. Factors affecting accuracy and precision in TPUS motion estimation must be assessed to realise its full potential. METHODS AND MATERIALS: Patients were imaged using volumetric TPUS during the Clarity-Pro trial (NCT02388308). Prostate motion was measured online at patient set-up and offline by experienced observers. Cone beam CT with markers was used as a comparator and observer performance was also quantified. The influence of different clinical factors was examined to establish specific recommendations towards efficacious ultrasound guided radiotherapy. RESULTS: From 330 fractions in 22 patients, offline observer random errors were 1.5 mm, 1.3 mm, 1.9 mm (left-right, superior-inferior, anteroposterior respectively). Errors increased in fractions exhibiting poor image quality to 3.3 mm, 3.3 mm and 6.8 mm. Poor image quality was associated with inconsistent probe placement, large anatomical changes and unfavourable imaging conditions within the patient. Online matching exhibited increased observer errors of: 3.2 mm, 2.9 mm and 4.7 mm. Four patients exhibited large systematic residual errors, of which three had poor quality images. Patient habitus showed no correlation with observer error, residual error, or image quality. CONCLUSIONS: TPUS offers the unique potential to directly assess inter- and intra-fraction motion on conventional linacs. Inconsistent image quality, inexperienced operators and the pressures of the clinical environment may degrade precision and accuracy. Experienced operators are essential and cross-centre standards for training and QA should be established that build upon current guidance. Greater use of automation technologies may further minimise uncertainties.

2.
Radiother Oncol ; 149: 134-141, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387546

RESUMO

BACKGROUND AND PURPOSE: Daily image guidance is standard care for prostate radiotherapy. Innovations which improve the accuracy and efficiency of ultrasound guidance are needed, particularly with respect to reducing interobserver variation. This study explores automation tools for this purpose, demonstrated on the Elekta Clarity Autoscan®. The study was conducted as part of the Clarity-Pro trial (NCT02388308). MATERIALS AND METHODS: Ultrasound scan volumes were collected from 32 patients. Prostate matches were performed using two proposed workflows and the results compared with Clarity's proprietary software. Gold standard matches derived from manually localised landmarks provided a reference. The two workflows incorporated a custom 3D image registration algorithm, which was benchmarked against a third-party application (Elastix). RESULTS: Significant reductions in match errors were reported from both workflows compared to standard protocol. Median (IQR) absolute errors in the left-right, anteroposterior and craniocaudal axes were lowest for the Manually Initiated workflow: 0.7(1.0) mm, 0.7(0.9) mm, 0.6(0.9) mm compared to 1.0(1.7) mm, 0.9(1.4) mm, 0.9(1.2) mm for Clarity. Median interobserver variation was ≪0.01 mm in all axes for both workflows compared to 2.2 mm, 1.7 mm, 1.5 mm for Clarity in left-right, anteroposterior and craniocaudal axes. Mean matching times was also reduced to 43 s from 152 s for Clarity. Inexperienced users of the proposed workflows attained better match precision than experienced users on Clarity. CONCLUSION: Automated image registration with effective input and verification steps should increase the efficacy of interfraction ultrasound guidance compared to the current commercially available tools.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Automação , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador , Ultrassonografia
3.
Ultrasound Med Biol ; 46(4): 1040-1052, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926750

RESUMO

The stacked-ellipse (SE) algorithm was developed to rapidly segment the uterus on 3-D ultrasound (US) for the purpose of enabling US-guided adaptive radiotherapy (RT) for uterine cervix cancer patients. The algorithm was initialised manually on a single sagittal slice to provide a series of elliptical initialisation contours in semi-axial planes along the uterus. The elliptical initialisation contours were deformed according to US features such that they conformed to the uterine boundary. The uterus of 15 patients was scanned with 3-D US using the Clarity System (Elekta Ltd.) at multiple days during RT and manually contoured (n = 49 images and corresponding contours). The median (interquartile range) Dice similarity coefficient and mean surface-to-surface-distance between the SE algorithm and manual contours were 0.80 (0.03) and 3.3 (0.2) mm, respectively, which are within the ranges of reported inter-observer contouring variabilities. The SE algorithm could be implemented in adaptive RT to precisely segment the uterus on 3-D US.


Assuntos
Ultrassonografia de Intervenção/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Útero/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Feminino , Humanos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/radioterapia
4.
Int J Radiat Oncol Biol Phys ; 104(3): 685-693, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30872145

RESUMO

PURPOSE: Adaptive radiation therapy strategies could account for interfractional uterine motion observed in patients with cervix cancer, but the current cone beam computed tomography (CBCT)-based treatment workflow is limited by poor soft-tissue contrast. The goal of the present study was to determine if ultrasound (US) could be used to improve visualization of the uterus, either as a single modality or in combination with CBCT. METHODS AND MATERIALS: Interobserver uterine contour agreement and confidence were compared on 40 corresponding CBCT, US, and CBCT-US-fused images from 11 patients with cervix cancer. Contour agreement was measured using the Dice similarity coefficient (DSC) and mean contour-to-contour distance (MCCD). Observers rated their contour confidence on a scale from 1 to 10. Pairwise Wilcoxon signed-rank tests were used to measure differences in contour agreement and confidence. RESULTS: CBCT-US fused images had significantly better contour agreement and confidence than either individual modality (P < .05), with median (interquartile range [IQR]) values of 0.84 (0.11), 1.26 (0.23) mm, and 7 (2) for the DSC, MCCD, and observer confidence ratings, respectively. Contour agreement was similar between US and CBCT, with median (IQR) DSCs of 0.81 (0.17) and 0.82 (0.14) and MCCDs of 1.75 (1.15) mm and 1.62 (0.74) mm. Observers were significantly more confident in their US-based contours than in their CBCT-based contours (P < .05), with median (IQR) confidence ratings of 7 (2.75) versus 5 (4). CONCLUSIONS: CBCT and US are complementary and improve uterine segmentation precision when combined. Observers could localize the uterus with a similar precision on independent US and CBCT images.


Assuntos
Colo do Útero/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Imagem Multimodal/métodos , Radioterapia Guiada por Imagem/métodos , Ultrassonografia , Neoplasias do Colo do Útero/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador/métodos , Padrões de Referência , Autoimagem , Estatísticas não Paramétricas , Bexiga Urinária/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
5.
Int J Radiat Oncol Biol Phys ; 102(4): 912-921, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859785

RESUMO

PURPOSE: Our purpose was to perform an in vivo validation of ultrasound imaging for intrafraction motion estimation using the Elekta Clarity Autoscan system during prostate radiation therapy. The study was conducted as part of the Clarity-Pro trial (NCT02388308). METHODS AND MATERIALS: Initial locations of intraprostatic fiducial markers were identified from cone beam computed tomography scans. Marker positions were translated according to Clarity intrafraction 3-dimensional prostate motion estimates. The updated locations were projected onto the 2-dimensional electronic portal imager plane. These Clarity-based estimates were compared with the actual portal-imaged 2-dimensional marker positions. Images from 16 patients encompassing 80 fractions were analyzed. To investigate the influence of intraprostatic markers and image quality on ultrasound motion estimation, 3 observers rated image quality, and the marker visibility on ultrasound images was assessed. RESULTS: The median difference between Clarity-defined intrafraction marker locations and portal-imaged marker locations was 0.6 mm (with 95% limit of agreement at 2.5 mm). Markers were identified on ultrasound in only 3 of a possible 240 instances. No linear relationship between image quality and Clarity motion estimation confidence was identified. The difference between Clarity-based motion estimates and electronic portal-imaged marker location was also independent of image quality. Clarity estimation confidence was degraded in a single fraction owing to poor probe placement. CONCLUSIONS: The accuracy of Clarity intrafraction prostate motion estimation is comparable with that of other motion-monitoring systems in radiation therapy. The effect of fiducial markers in the study was deemed negligible as they were rarely visible on ultrasound images compared with intrinsic anatomic features. Clarity motion estimation confidence was robust to variations in image quality and the number of ultrasound-imaged anatomic features; however, it was degraded as a result of poor probe placement.


Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Ultrassonografia/métodos , Humanos , Masculino , Movimento (Física) , Neoplasias da Próstata/diagnóstico por imagem
6.
Med Dosim ; 43(4): 328-333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29223303

RESUMO

This study aimed to investigate the effect of body habitus on supraclavicular (SC) dose-volume histogram (DVH) parameters among breast cancer patients according to 3 different techniques. Three SC irradiation plans were generated for 24 postoperative breast cancer patients: (1) direct antero-posterior field only (1fieldP), with dose prescribed to a 3-cm depth; (2) 3-cm depth plan (3cmP) using an antero-posterior field plus a posterior boost with the dose prescription defined to 3 cm; and (3) optimized plan (OptP) similar to 3cmP, with dose prescribed depending on the anatomy. The OptP plans had the least variation in DVH parameters with body habitus; 3cmP plans were the most varied. Conformity index among normal weight patients were 0.73, 0.78, and 0.87 (p = 0.02) and 0.61, 0.6, and 0.82 among overweight-obese patients for 1fieldP, 3cmP, and OptP, respectively (p < 0.001). V95% of the planning target volume among normal weight patients were 72.63%, 78.03%, and 87.18% for 1fieldP, 3cmP, and OptP, respectively (p = 0.02). The corresponding values among overweight-obese patients were 60.5%, 59.62%, and 81.62%, respectively (p = 0.001). Fixed depth dose prescriptions caused greater SC under dose than plans optimized according to patient's anatomy.


Assuntos
Neoplasias da Mama/radioterapia , Linfonodos/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Feminino , Humanos , Obesidade , Sobrepeso , Dosagem Radioterapêutica
7.
Med Phys ; 44(7): 3630-3638, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493295

RESUMO

PURPOSE: 3D ultrasound (US) images of the uterus may be used to adapt radiotherapy (RT) for cervical cancer patients based on changes in daily anatomy. This requires accurate on-line segmentation of the uterus. The aim of this work was to assess the accuracy of Elekta's "Assisted Gyne Segmentation" (AGS) algorithm in semi-automatically segmenting the uterus on 3D transabdominal ultrasound images by comparison with manual contours. MATERIALS & METHODS: Nine patients receiving RT for cervical cancer were imaged with the 3D Clarity® transabdominal probe at RT planning, and 1 to 7 times during treatment. Image quality was rated from unusable (0)-excellent (3). Four experts segmented the uterus (defined as the uterine body and cervix) manually and using AGS on images with a ranking > 0. Pairwise analysis between manual contours was evaluated to determine interobserver variability. The accuracy of the AGS method was assessed by measuring its agreement with manual contours via pairwise analysis. RESULTS: 35/44 images acquired (79.5%) received a ranking > 0. For the manual contour variation, the median [interquartile range (IQR)] distance between centroids (DC) was 5.41 [5.0] mm, the Dice similarity coefficient (DSC) was 0.78 [0.11], the mean surface-to-surface distance (MSSD) was 3.20 [1.8] mm, and the uniform margin of 95% (UM95) was 4.04 [5.8] mm. There was no correlation between image quality and manual contour agreement. AGS failed to give a result in 19.3% of cases. For the remaining cases, the level of agreement between AGS contours and manual contours depended on image quality. There were no significant differences between the AGS segmentations and the manual segmentations on the images that received a quality rating of 3. However, the AGS algorithm had significantly worse agreement with manual contours on images with quality ratings of 1 and 2 compared with the corresponding interobserver manual variation. The overall median [IQR] DC, DSC, MSSD, and UM95 between AGS and manual contours was 5.48 [5.45] mm, 0.77 [0.14], 3.62 [2.7] mm, and 5.19 [8.1] mm, respectively. CONCLUSIONS: The AGS tool was able to represent uterine shape of cervical cancer patients in agreement with manual contouring in cases where the image quality was excellent, but not in cases where image quality was degraded by common artifacts such as shadowing and signal attenuation. The AGS tool should be used with caution for adaptive RT purposes, as it is not reliable in accurately segmenting the uterus on 'good' or 'poor' quality images. The interobserver agreement between manual contours of the uterus drawn on 3D US was consistent with results of similar studies performed on CT and MRI images.


Assuntos
Algoritmos , Imageamento Tridimensional , Ultrassonografia de Intervenção , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Reprodutibilidade dos Testes , Ultrassonografia
8.
Med Phys ; 43(8): 4628, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487879

RESUMO

PURPOSE: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. METHODS: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity's real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. RESULTS: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400-1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. CONCLUSIONS: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.


Assuntos
Movimento (Física) , Ultrassonografia/métodos , Artefatos , Calibragem , Desenho de Equipamento , Estudos de Viabilidade , Marcadores Fiduciais , Humanos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiometria/instrumentação , Radiometria/métodos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Software , Fatores de Tempo , Ultrassonografia/instrumentação
9.
Med Phys ; 43(1): 455, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745938

RESUMO

PURPOSE: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. METHODS: Liver ultrasound sequences (15-23 Hz imaging rate, 2.5-5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α-ß filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). RESULTS: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. CONCLUSIONS: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.


Assuntos
Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Fígado/fisiologia , Movimento , Radioterapia Guiada por Imagem , Voluntários Saudáveis , Humanos , Ultrassonografia
10.
Br J Radiol ; 89(1058): 20150603, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26585543

RESUMO

OBJECTIVE: To determine if subsets of patients may benefit from smaller or larger margins when using laser setup and bony anatomy verification of breast tumour bed (TB) boost radiotherapy (RT). METHODS: Verification imaging data acquired using cone-beam CT, megavoltage CT or two-dimensional kilovoltage imaging on 218 patients were used (1574 images). TB setup errors for laser-only setup (dlaser) and for bony anatomy verification (dbone) were determined using clips implanted into the TB as a gold standard for the TB position. Cases were grouped by centre-, patient- and treatment-related factors, including breast volume, TB position, seroma visibility and surgical technique. Systematic (Σ) and random (σ) TB setup errors were compared between groups, and TB planning target volume margins (MTB) were calculated. RESULTS: For the study population, Σlaser was between 2.8 and 3.4 mm, and Σbone was between 2.2 and 2.6 mm, respectively. Females with larger breasts (p = 0.03), easily visible seroma (p ≤ 0.02) and open surgical technique (p ≤ 0.04) had larger Σlaser. Σbone was larger for females with larger breasts (p = 0.02) and lateral tumours (p = 0.04). Females with medial tumours (p < 0.01) had smaller Σbone. CONCLUSION: If clips are not used, margins should be 8 and 10 mm for bony anatomy verification and laser setup, respectively. Individualization of TB margins may be considered based on breast volume, TB and seroma visibility. ADVANCES IN KNOWLEDGE: Setup accuracy using lasers and bony anatomy is influenced by patient and treatment factors. Some patients may benefit from clip-based image guidance more than others.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Tomografia Computadorizada de Feixe Cônico/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Pontos de Referência Anatômicos , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Posicionamento do Paciente , Fótons , Interpretação de Imagem Radiográfica Assistida por Computador , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Reino Unido
11.
Br J Radiol ; 88(1054): 20150208, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246041

RESUMO

OBJECTIVE: Cone beam CT (CBCT) enables soft-tissue registration to planning CT for position verification in radiotherapy. The aim of this study was to determine the interobserver error (IOE) in prostate position verification using a standard CBCT protocol, and the effect of reducing CBCT scan length or increasing exposure, compared with standard imaging protocol. METHODS: CBCT images were acquired using a novel 7 cm length image with standard exposure (1644 mAs) at Fraction 1 (7), standard 12 cm length image (1644 mAs) at Fraction 2 (12) and a 7 cm length image with higher exposure (2632 mAs) at Fraction 3 (7H) on 31 patients receiving radiotherapy for prostate cancer. Eight observers (two clinicians and six radiographers) registered the images. Guidelines and training were provided. The means of the IOEs were compared using a Kruzkal-Wallis test. Levene's test was used to test for differences in the variances of the IOEs and the independent prostate position. RESULTS: No significant difference was found between the IOEs of each image protocol in any direction. Mean absolute IOE was the greatest in the anteroposterior direction. Standard deviation (SD) of the IOE was the least in the left-right direction for each of the three image protocols. The SD of the IOE was significantly less than the independent prostate motion in the anterior-posterior (AP) direction only (1.8 and 3.0 mm, respectively: p = 0.017). IOEs were within 1 SD of the independent prostate motion in 95%, 77% and 96% of the images in the RL, SI and AP direction. CONCLUSION: Reducing CBCT scan length and increasing exposure did not have a significant effect on IOEs. To reduce imaging dose, a reduction in CBCT scan length could be considered without increasing the uncertainty in prostate registration. Precision of CBCT verification of prostate radiotherapy is affected by IOE and should be quantified prior to implementation. ADVANCES IN KNOWLEDGE: This study shows the importance of quantifying the magnitude of IOEs prior to CBCT implementation.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Humanos , Masculino , Movimento (Física) , Variações Dependentes do Observador , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
12.
Phys Med Biol ; 59(7): 1701-20, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619097

RESUMO

This study investigates the use of a mechanically-swept 3D ultrasound (3D-US) probe for soft-tissue displacement monitoring during prostate irradiation, with emphasis on quantifying the accuracy relative to CyberKnife® x-ray fiducial tracking. An US phantom, implanted with x-ray fiducial markers was placed on a motion platform and translated in 3D using five real prostate motion traces acquired using the Calypso system. Motion traces were representative of all types of motion as classified by studying Calypso data for 22 patients. The phantom was imaged using a 3D swept linear-array probe (to mimic trans-perineal imaging) and, subsequently, the kV x-ray imaging system on CyberKnife. A 3D cross-correlation block-matching algorithm was used to track speckle in the ultrasound data. Fiducial and US data were each compared with known phantom displacement. Trans-perineal 3D-US imaging could track superior-inferior (SI) and anterior-posterior (AP) motion to ≤0.81 mm root-mean-square error (RMSE) at a 1.7 Hz volume rate. The maximum kV x-ray tracking RMSE was 0.74 mm, however the prostate motion was sampled at a significantly lower imaging rate (mean: 0.04 Hz). Initial elevational (right-left; RL) US displacement estimates showed reduced accuracy but could be improved (RMSE <2.0 mm) using a correlation threshold in the ultrasound tracking code to remove erroneous inter-volume displacement estimates. Mechanically-swept 3D-US can track the major components of intra-fraction prostate motion accurately but exhibits some limitations. The largest US RMSE was for elevational (RL) motion. For the AP and SI axes, accuracy was sub-millimetre. It may be feasible to track prostate motion in 2D only. 3D-US also has the potential to improve high tracking accuracy for all motion types. It would be advisable to use US in conjunction with a small (∼2.0 mm) centre-of-mass displacement threshold in which case it would be possible to take full advantage of the accuracy and high imaging rate capability.


Assuntos
Marcadores Fiduciais , Imageamento Tridimensional/instrumentação , Movimento , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Radiocirurgia , Tomografia Computadorizada por Raios X/instrumentação , Fracionamento da Dose de Radiação , Humanos , Masculino , Próstata/fisiopatologia , Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/cirurgia , Tomografia Computadorizada por Raios X/normas , Ultrassonografia
13.
IEEE Trans Med Imaging ; 32(8): 1481-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23591482

RESUMO

Validation is required to ensure automated segmentation algorithms are suitable for radiotherapy target definition. In the absence of true segmentation, algorithmic segmentation is validated against expert outlining of the region of interest. Multiple experts are used to overcome inter-expert variability. Several approaches have been studied in the literature, but the most appropriate approach to combine the information from multiple expert outlines, to give a single metric for validation, is unclear. None consider a metric that can be tailored to case-specific requirements in radiotherapy planning. Validation index (VI), a new validation metric which uses experts' level of agreement was developed. A control parameter was introduced for the validation of segmentations required for different radiotherapy scenarios: for targets close to organs-at-risk and for difficult to discern targets, where large variation between experts is expected. VI was evaluated using two simulated idealized cases and data from two clinical studies. VI was compared with the commonly used Dice similarity coefficient (DSCpair - wise) and found to be more sensitive than the DSCpair - wise to the changes in agreement between experts. VI was shown to be adaptable to specific radiotherapy planning scenarios.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Mamografia , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
14.
Phys Med Biol ; 58(10): 3359-75, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23615376

RESUMO

This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.


Assuntos
Radioterapia de Intensidade Modulada/instrumentação , Semicondutores , Calibragem , Estudos de Viabilidade , Humanos , Óxidos , Dosagem Radioterapêutica , Fatores de Tempo
15.
Radiother Oncol ; 106(2): 231-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23490269

RESUMO

PURPOSE: International consensus has not been reached regarding the optimal number of implanted tumour bed (TB) markers for partial breast/breast boost radiotherapy target volume delineation. Four common methods are: insertion of 6 clips (4 radial, 1 deep and 1 superficial), 5 clips (4 radial and 1 deep), 1 clip at the chest wall, and no clips. We compared TB volumes delineated using 6, 5, 1 and 0 clips in women who have undergone wide-local excision (WLE) of breast cancer (BC) with full-thickness closure of the excision cavity, in order to determine the additional margin required for breast boost or partial breast irradiation (PBI) when fewer than 6 clips are used. METHODS: Ten patients with invasive ductal BC who had undergone WLE followed by implantation of six fiducial markers (titanium clips) each underwent CT imaging for radiotherapy planning purposes. Retrospective processing of the DICOM image datasets was performed to remove markers and associated imaging artefacts, using an in-house software algorithm. Four observers outlined TB volumes on four different datasets for each case: (1) all markers present (CT6M); (2) the superficial marker removed (CT(5M)); (3) all but the chest wall marker removed (CTCW); (4) all markers removed (CT(0M)). For each observer, the additional margin required around each of TB(0M), TBCW, and TB(5M) in order to encompass TB(6M) was calculated. The conformity level index (CLI) and differences in centre-of-mass (COM) between observers were quantified for CT(0M), CTCW, CT(5M), CT(6M). RESULTS: The overall median additional margins required to encompass TB(6M) were 8mm (range 0-28 mm) for TB(0M), 5mm (range 1-13 mm) for TBCW, and 2mm (range 0-7 mm) for TB(5M). CLI were higher for TB volumes delineated using CT(6M) (0.31) CT(5M) (0.32) than for CTCW (0.19) and CT(0M) (0.15). CONCLUSIONS: In women who have undergone WLE of breast cancer with full-thickness closure of the excision cavity and who are proceeding to PBI or breast boost RT, target volume delineation based on 0 or 1 implanted markers is not recommended as large additional margins are required to account for uncertainty over true TB location. Five implanted markers (one deep and four radial) are likely to be adequate assuming the addition of a standard 10-15 mm TB-CTV margin. Low CLI values for all TB volumes reflect the sensitivity of low volumes to small differences in delineation and are unlikely to be clinically significant for TB(5M) and TB(6M) in the context of adequate TB-CTV margins.


Assuntos
Neoplasias da Mama/radioterapia , Marcadores Fiduciais , Adulto , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Carga Tumoral
16.
Int J Radiat Oncol Biol Phys ; 84(3): e419-25, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22717244

RESUMO

PURPOSE: To validate and compare the accuracy of breast tissue segmentation methods applied to computed tomography (CT) scans used for radiation therapy planning and to study the effect of tissue distribution on the segmentation accuracy for the purpose of developing models for use in adaptive breast radiation therapy. METHODS AND MATERIALS: Twenty-four patients receiving postlumpectomy radiation therapy for breast cancer underwent CT imaging in prone and supine positions. The whole-breast clinical target volume was outlined. Clinical target volumes were segmented into fibroglandular and fatty tissue using the following algorithms: physical density thresholding; interactive thresholding; fuzzy c-means with 3 classes (FCM3) and 4 classes (FCM4); and k-means. The segmentation algorithms were evaluated in 2 stages: first, an approach based on the assumption that the breast composition should be the same in both prone and supine position; and second, comparison of segmentation with tissue outlines from 3 experts using the Dice similarity coefficient (DSC). Breast datasets were grouped into nonsparse and sparse fibroglandular tissue distributions according to expert assessment and used to assess the accuracy of the segmentation methods and the agreement between experts. RESULTS: Prone and supine breast composition analysis showed differences between the methods. Validation against expert outlines found significant differences (P<.001) between FCM3 and FCM4. Fuzzy c-means with 3 classes generated segmentation results (mean DSC = 0.70) closest to the experts' outlines. There was good agreement (mean DSC = 0.85) among experts for breast tissue outlining. Segmentation accuracy and expert agreement was significantly higher (P<.005) in the nonsparse group than in the sparse group. CONCLUSIONS: The FCM3 gave the most accurate segmentation of breast tissues on CT data and could therefore be used in adaptive radiation therapy-based on tissue modeling. Breast tissue segmentation methods should be used with caution in patients with sparse fibroglandular tissue distribution.


Assuntos
Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Tecido Adiposo/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mamografia , Mastectomia Segmentar , Decúbito Ventral , Radioterapia Adjuvante/métodos , Decúbito Dorsal
17.
Radiother Oncol ; 103(2): 166-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22521748

RESUMO

PURPOSE: This study investigates (i) the effect of verification protocols on treatment accuracy and PTV margins for partial breast and boost breast radiotherapy with short fractionation schema (15 fractions), (ii) the effect of deformation of the excision cavity (EC) on PTV margin size, (iii) the imaging dose required to achieve specific PTV margins. METHODS AND MATERIALS: Verification images using implanted EC markers were studied in 36 patients. Target motion was estimated for a 15 fraction partial breast regimen using imaging protocols based on on-line and off-line motion correction strategies (No Action Level (NAL) and the extended NAL (eNAL) protocols). Target motion was used to estimate a PTV margin for each protocol. To evaluate treatment errors due to deformation of the excision cavity, individual marker positions were obtained from 11 patients. The mean clip displacement and daily variation in clip position during radiotherapy were determined and the contribution of these errors to PTV margin calculated. Published imaging dose data were used to estimate total dose for each protocol. Finally the number of images required to obtain a specific PTV margin was evaluated and hence, the relationship between PTV margins and imaging dose was investigated. RESULTS: The PTV margin required to account for excision cavity motion, varied between 10.2 and 2.4mm depending on the correction strategy used. Average clip movement was 0.8mm and average variation in clip position during treatment was 0.4mm. The contribution to PTV margin from deformation was estimated to be small, less than 0.2mm for both off-line and on-line correction protocols. CONCLUSION: A boost or partial breast PTV margin of ∼10 mm, is possible with zero imaging dose and workload, however, patients receiving boost radiotherapy may benefit from a margin reduction of ∼4 mm with imaging doses from 0.4cGy to 25cGy using an eNAL protocol. PTV margin contributions from deformation errors are likely to be small in comparison to other sources of error, i.e., set up or delineation.


Assuntos
Neoplasias da Mama/radioterapia , Radioterapia Guiada por Imagem , Neoplasias da Mama/patologia , Fracionamento da Dose de Radiação , Feminino , Humanos , Movimento (Física)
18.
Phys Med Biol ; 57(5): 1359-74, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22349408

RESUMO

The effectiveness of intensity-modulated radiation therapy (IMRT) is compromised by involuntary motion (e.g. respiration, cardiac activity). The feasibility of processing ultrasound echo data to automatically estimate 3D liver motion for real-time IMRT guidance was previously demonstrated, but performance was limited by an acquisition speed of 2 volumes per second due to hardware restrictions of a mechanical linear array probe. Utilizing a 2D matrix array probe with parallel receive beamforming offered increased acquisition speeds and an opportunity to investigate the benefits of higher volume rates. In vivo livers of three volunteers were scanned with and without respiratory motion at volume rates of 24 and 48 Hz, respectively. Respiration was suspended via voluntary breath hold. Correlation-based, phase-sensitive 3D speckle tracking was applied to consecutively acquired volumes of echo data. Volumes were omitted at fixed intervals and 3D speckle tracking was re-applied to study the effect of lower scan rates. Results revealed periodic motion that corresponded with the heart rate or breathing cycle in the absence or presence of respiration, respectively. For cardiac-induced motion, volume rates for adequate tracking ranged from 8 to 12 Hz and was limited by frequency discrepancies between tracking estimates from higher and lower frequency scan rates. Thus, the scan rate of volume data acquired without respiration was limited by the need to sample the frequency induced by the beating heart. In respiratory-dominated motion, volume rate limits ranged from 4 to 12 Hz, interpretable from the root-mean-squared deviation (RMSD) from tracking estimates at 24 Hz. While higher volume rates yielded RMSD values less than 1 mm in most cases, lower volume rates yielded RMSD values of 2-6 mm.


Assuntos
Fígado/diagnóstico por imagem , Fígado/patologia , Ultrassonografia/métodos , Sistema Cardiovascular , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Movimento (Física) , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Respiração , Fatores de Tempo
19.
Med Phys ; 38(11): 6152-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22047380

RESUMO

PURPOSE: The purpose of this work was to investigate the use of an experimental complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) for tracking of moving fiducial markers during radiotherapy. METHODS: The APS has an active area of 5.4 × 5.4 cm and maximum full frame read-out rate of 20 frame s(-1), with the option to read out a region-of-interest (ROI) at an increased rate. It was coupled to a 4 mm thick ZnWO4 scintillator which provided a quantum efficiency (QE) of 8% for a 6 MV x-ray treatment beam. The APS was compared with a standard iViewGT flat panel amorphous Silicon (a-Si) electronic portal imaging device (EPID), with a QE of 0.34% and a frame-rate of 2.5 frame s(-1). To investigate the ability of the two systems to image markers, four gold cylinders of length 8 mm and diameter 0.8, 1.2, 1.6, and 2 mm were placed on a motion-platform. Images of the stationary markers were acquired using the APS at a frame-rate of 20 frame s(-1), and a dose-rate of 143 MU min(-1) to avoid saturation. EPID images were acquired at the maximum frame-rate of 2.5 frame s(-1), and a reduced dose-rate of 19 MU min(-1) to provide a similar dose per frame to the APS. Signal-to-noise ratio (SNR) of the background signal and contrast-to-noise ratio (CNR) of the marker signal relative to the background were evaluated for both imagers at doses of 0.125 to 2 MU. RESULTS: Image quality and marker visibility was found to be greater in the APS with SNR ∼5 times greater than in the EPID and CNR up to an order of magnitude greater for all four markers. To investigate the ability to image and track moving markers the motion-platform was moved to simulate a breathing cycle with period 6 s, amplitude 20 mm and maximum speed 13.2 mm s(-1). At the minimum integration time of 50 ms a tracking algorithm applied to the APS data found all four markers with a success rate of ≥92% and positional error ≤90 µm. At an integration time of 400 ms the smallest marker became difficult to detect when moving. The detection of moving markers using the a-Si EPID was difficult even at the maximum dose-rate of 592 MU min(-1) due to the lower QE and longer integration time of 400 ms. CONCLUSIONS: This work demonstrates that a fast read-out, high QE APS may be useful in the tracking of moving fiducial markers during radiotherapy. Further study is required to investigate the tracking of markers moving in 3D in a treatment beam attenuated by moving patient anatomy. This will require a larger sensor with ROI read-out to maintain speed and a manageable data-rate.


Assuntos
Marcadores Fiduciais , Movimento (Física) , Radioterapia/normas , Semicondutores , Estudos de Viabilidade , Fatores de Tempo
20.
Phys Med Biol ; 56(22): 7127-43, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22025168

RESUMO

Three-dimensional (3D) soft tissue tracking using 3D ultrasound is of interest for monitoring organ motion during therapy. Previously we demonstrated feature tracking of respiration-induced liver motion in vivo using a 3D swept-volume ultrasound probe. The aim of this study was to investigate how object speed affects the accuracy of tracking ultrasonic speckle in the absence of any structural information, which mimics the situation in homogenous tissue for motion in the azimuthal and elevational directions. For object motion prograde and retrograde to the sweep direction of the transducer, the spatial sampling frequency increases or decreases with object speed, respectively. We examined the effect object motion direction of the transducer on tracking accuracy. We imaged a homogenous ultrasound speckle phantom whilst moving the probe with linear motion at a speed of 0-35 mm s⁻¹. Tracking accuracy and precision were investigated as a function of speed, depth and direction of motion for fixed displacements of 2 and 4 mm. For the azimuthal direction, accuracy was better than 0.1 and 0.15 mm for displacements of 2 and 4 mm, respectively. For a 2 mm displacement in the elevational direction, accuracy was better than 0.5 mm for most speeds. For 4 mm elevational displacement with retrograde motion, accuracy and precision reduced with speed and tracking failure was observed at speeds of greater than 14 mm s⁻¹. Tracking failure was attributed to speckle de-correlation as a result of decreasing spatial sampling frequency with increasing speed of retrograde motion. For prograde motion, tracking failure was not observed. For inter-volume displacements greater than 2 mm, only prograde motion should be tracked which will decrease temporal resolution by a factor of 2. Tracking errors of the order of 0.5 mm for prograde motion in the elevational direction indicates that using the swept probe technology speckle tracking accuracy is currently too poor to track homogenous tissue over a series of volume images as these errors will accumulate. Improvements could be made through increased spatial sampling in the elevational direction.


Assuntos
Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Humanos , Movimento (Física) , Imagens de Fantasmas , Respiração , Sensibilidade e Especificidade , Transdutores , Ultrassonografia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...