Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 105(3): 213-27, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20614182

RESUMO

The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Genótipo , Luz , Folhas de Planta/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Cloroplastos/efeitos da radiação , Citocalasina B/farmacologia , Dinitrobenzenos/farmacologia , Proteínas dos Microfilamentos/genética , Microscopia Confocal , Fosfoproteínas/genética , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas Serina-Treonina Quinases , Sulfanilamidas/farmacologia , Xantofilas/metabolismo , Zeaxantinas
2.
J Exp Bot ; 59(9): 2285-97, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18468985

RESUMO

The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission was used as an indicator of the ability of leaves to optimize light absorption. The ability of leaves to deal with 3 h of high light stress at 10 degrees C and their capacity to recover in low light was determined by measuring photochemical efficiencies of PSII using chlorophyll a fluorescence. Chloroplast movement was comparable in leaves ranging in chloroplast numbers from 120 to 30 per mesophyll cell: the final light transmission levels after exposure to 0.1 (accumulation response) and 100 micromol photons m(-2) s(-1) (avoidance response) were indistinguishable, the chloroplasts responded quickly to small increases in light intensity and the kinetics of movement were similar. However, when chloroplast numbers per mesophyll cell decreased to 18 or below, the accumulation response was significantly reduced. The avoidance response was only impaired in mutants with nine or fewer chloroplasts, both in terms of final transmission levels and the speed of movement. Only mutants lacking both blue light receptors (phot1/phot2) or those with drastically reduced chloroplast numbers and severely impacted avoidance responses showed a reduced ability to recover from high light stress.


Assuntos
Arabidopsis/efeitos da radiação , Cloroplastos/efeitos da radiação , Luz , Folhas de Planta/efeitos da radiação , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Alinhamento de Sequência
3.
Photosynth Res ; 87(3): 303-11, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16699921

RESUMO

A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.


Assuntos
Cloroplastos/metabolismo , Fotometria/economia , Fotometria/instrumentação , Arabidopsis/efeitos da radiação , Cloroplastos/efeitos da radiação , Escuridão , Luz , Movimento , Folhas de Planta/citologia , Folhas de Planta/efeitos da radiação , Fatores de Tempo
4.
Oecologia ; 104(3): 280-290, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28307583

RESUMO

Xanthophyll-cycle pigments and photosynthetic capacity (PSmax) were analyzed in 25 species from different light environments (canopy, gap, understory) within a Panamanian tropical forest. (1) Sun-exposed leaves of canopy tree species showed the highest photosynthetic capacities and largest xanthophyll-cycle pools (violaxanthin, antheraxanthin, zeaxanthin) of about 87 mmol mol-1 chlorophyll with only small amounts of α-carotene [about 7 mmol mol-1 chlorophyll = 8% of total (α+ß) carotene pool]. Under high natural photon flux densities (PFDs) canopy leaves rapidly converted up to 96% of the xanthophyll-cycle pool into zeaxanthin. The back reaction to violaxanthin occurred much faster in low light than in complete darkness. At the end of the night, zeaxanthin still accounted for, on average, 14% of the total xanthophyll-cycle pigments. (2) Leaves of gap plants had intermediate values of PSmax and a 43% lower total carotenoid content than canopy leaves. The average size of the xanthophyll-cycle pool was 35 mmol mol-1 chlorophyll, and α-carotene accounted for up to 66% of the total (α+ß) carotene pool. Under high light conditions gap plants converted, on average, 86% of the xanthophyll-cycle pigments into zeaxanthin. The back reaction, following a decrease in ambient PFD, was slower than the forward reaction. At the end of the night, zeaxanthin accounted for, on average, 7% of the xanthophyll-cycle pigments in gap plants. (3) Understory plants showed the lowest values of PSmax and the smallest xanthophyll-cycle pool of about 22 mmol mol-1 chlorophyll. α-Carotene accounted for up to 70% of total carotene. The conversion of xanthophyll-cycle pigments into zeaxanthin was negligible during short sunflecks of 1-2 min duration and PFDs up to about 400 µmol m-2 s-1. At predawn, leaves of understory plants rarely contained any detectable zeaxanthin. Aechmea magdalenae, an understory CAM plant, showed exceptionally high rates of PSmax per unit leaf area compared to sympatric C3 understory species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...