Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38669515

RESUMO

Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.

2.
Genetics ; 226(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38298127

RESUMO

Short tandem repeats (STRs) are hotspots of genomic variability in the human germline because of their high mutation rates, which have long been attributed largely to polymerase slippage during DNA replication. This model suggests that STR mutation rates should scale linearly with a father's age, as progenitor cells continually divide after puberty. In contrast, it suggests that STR mutation rates should not scale with a mother's age at her child's conception, since oocytes spend a mother's reproductive years arrested in meiosis II and undergo a fixed number of cell divisions that are independent of the age at ovulation. Yet, mirroring recent findings, we find that STR mutation rates covary with paternal and maternal age, implying that some STR mutations are caused by DNA damage in quiescent cells rather than polymerase slippage in replicating progenitor cells. These results echo the recent finding that DNA damage in oocytes is a significant source of de novo single nucleotide variants and corroborate evidence of STR expansion in postmitotic cells. However, we find that the maternal age effect is not confined to known hotspots of oocyte mutagenesis, nor are postzygotic mutations likely to contribute significantly. STR nucleotide composition demonstrates divergent effects on de novo mutation (DNM) rates between sexes. Unlike the paternal lineage, maternally derived DNMs at A/T STRs display a significantly greater association with maternal age than DNMs at G/C-containing STRs. These observations may suggest the mechanism and developmental timing of certain STR mutations and contradict prior attribution of replication slippage as the primary mechanism of STR mutagenesis.


Assuntos
Repetições de Microssatélites , Taxa de Mutação , Humanos , Feminino , Criança , Mutação , Pais , Meiose , Nucleotídeos
3.
Elife ; 122024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381482

RESUMO

Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.


Assuntos
Epistasia Genética , Mutação em Linhagem Germinativa , Humanos , Animais , Camundongos , Alelos , Mutação , Mapeamento Cromossômico , Mamíferos
4.
Mol Biol Evol ; 40(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37770035

RESUMO

Although evolutionary biologists have long theorized that variation in DNA repair efficacy might explain some of the diversity of lifespan and cancer incidence across species, we have little data on the variability of normal germline mutagenesis outside of humans. Here, we shed light on the spectrum and etiology of mutagenesis across mammals by quantifying mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k-mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clock-like mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the 1-mer spectrum's phylogenetic signal in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.


Assuntos
Mamíferos , Neoplasias , Humanos , Animais , Camundongos , Filogenia , Mutação , Mamíferos/genética , Mutagênese , Deriva Genética , Cetáceos , Neoplasias/genética
5.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398383

RESUMO

Little is known about how the spectrum and etiology of germline mutagenesis might vary among mammalian species. To shed light on this mystery, we quantify variation in mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k -mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clocklike mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these clocklike signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the mutation spectrum's phylogenetic signal when fit to non-context-dependent mutation spectrum data in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.

6.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37162999

RESUMO

Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair [1], mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs [2,3]. In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh [4]. Its effect depended on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci had greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.

7.
Nature ; 617(7960): 325-334, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165237

RESUMO

Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences5,6.


Assuntos
Conversão Gênica , Mutação , Duplicações Segmentares Genômicas , Humanos , Conversão Gênica/genética , Genoma Humano/genética , Polimorfismo de Nucleotídeo Único/genética , Haplótipos/genética , Éxons/genética , Citosina/química , Guanina/química , Ilhas de CpG/genética
8.
Nat Genet ; 55(5): 730-731, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127671
9.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37039557

RESUMO

SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of G→T mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of C→T mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , SARS-CoV-2 , Mutação , Taxa de Mutação , Genoma Viral
10.
medRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38196581

RESUMO

Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner, and some evidence has also linked MUTYH to elevated incidence of other cancers as well as elevated mutation rates in normal somatic and germline cells. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family affected by pathogenic MUTYH variation and a history of colorectal cancer. Although this family's genotype, p.Y179C/V234M (c.536A>G/700G>A on transcript NM_001128425), contains a variant with conflicting functional interpretations, we use an in vitro cell line assay to determine that it partially attenuates MUTYH's function. In the children of mothers affected by the Y179C/V234M genotype, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same biallelic MUTYH genotype, despite calculating that we should have adequate power to detect such a mutator effect. This suggests that the oxidative stress repaired by MUTYH may contribute more to female reproductive aging than male reproductive aging in the general population.

11.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187618

RESUMO

Short tandem repeats (STRs) are hotspots of genomic variability in the human germline because of their high mutation rates, which have long been attributed largely to polymerase slippage during DNA replication. This model suggests that STR mutation rates should scale linearly with a father's age, as progenitor cells continually divide after puberty. In contrast, it suggests that STR mutation rates should not scale with a mother's age at her child's conception, since oocytes spend a mother's reproductive years arrested in meiosis II and undergo a fixed number of cell divisions that are independent of the age at ovulation. Yet, mirroring recent findings, we find that STR mutation rates covary with paternal and maternal age, implying that some STR mutations are caused by DNA damage in quiescent cells rather than the classical mechanism of polymerase slippage in replicating progenitor cells. These results also echo the recent finding that DNA damage in quiescent oocytes is a significant source of de novo SNVs and corroborate evidence of STR expansion in postmitotic cells. However, we find that the maternal age effect is not confined to previously discovered hotspots of oocyte mutagenesis, nor are post-zygotic mutations likely to contribute significantly. STR nucleotide composition demonstrates divergent effects on DNM rates between sexes. Unlike the paternal lineage, maternally derived DNMs at A/T STRs display a significantly greater association with maternal age than DNMs at GC-containing STRs. These observations may suggest the mechanism and developmental timing of certain STR mutations and are especially surprising considering the prior belief in replication slippage as the dominant mechanism of STR mutagenesis.

12.
bioRxiv ; 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36451887

RESUMO

SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single nucleotide mutations at four-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly two-fold decrease in the relative rate of G→T mutations in Omicron versus early clades, as was recently noted by Ruis et al (2022). There is also a decrease in the relative rate of C→T mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors-although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution, and suggests that human SARS-CoV-2 may be trending towards a mutation spectrum more similar to that of other animal sarbecoviruses.

13.
iScience ; 25(5): 104199, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494229

RESUMO

Aging research is unparalleled in the breadth of disciplines it encompasses, from evolutionary studies examining the forces that shape aging to molecular studies uncovering the underlying mechanisms of age-related functional decline. Despite a common focus to advance our understanding of aging, these disciplines have proceeded along distinct paths with little cross-talk. We propose that the concept of resilience can bridge this gap. Resilience describes the ability of a system to respond to perturbations by returning to its original state. Although resilience has been applied in a few individual disciplines in aging research such as frailty and cognitive decline, it has not been explored as a unifying conceptual framework that is able to connect distinct research fields. We argue that because a resilience-based framework can cross broad physiological levels and time scales it can provide the missing links that connect these diverse disciplines. The resulting framework will facilitate predictive modeling and validation and influence targets and directions in research on the biology of aging.

14.
Nature ; 605(7910): 497-502, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545679

RESUMO

Although germline mutation rates and spectra can vary within and between species, common genetic modifiers of the mutation rate have not been identified in nature1. Here we searched for loci that influence germline mutagenesis using a uniquely powerful resource: a panel of recombinant inbred mouse lines known as the BXD, descended from the laboratory strains C57BL/6J (B haplotype) and DBA/2J (D haplotype). Each BXD lineage has been maintained by brother-sister mating in the near absence of natural selection, accumulating de novo mutations for up to 50 years on a known genetic background that is a unique linear mosaic of B and D haplotypes2. We show that mice inheriting D haplotypes at a quantitative trait locus on chromosome 4 accumulate C>A germline mutations at a 50% higher rate than those inheriting B haplotypes, primarily owing to the activity of a C>A-dominated mutational signature known as SBS18. The B and D quantitative trait locus haplotypes encode different alleles of Mutyh, a DNA repair gene that underlies the heritable cancer predisposition syndrome that causes colorectal tumors with a high SBS18 mutation load3,4. Both B and D Mutyh alleles are present in wild populations of Mus musculus domesticus, providing evidence that common genetic variation modulates germline mutagenesis in a model mammalian species.


Assuntos
Mutação em Linhagem Germinativa , Mamíferos , Locos de Características Quantitativas , Alelos , Animais , Variação Genética , Haplótipos/genética , Masculino , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutação , Locos de Características Quantitativas/genética
15.
Philos Trans R Soc Lond B Biol Sci ; 377(1852): 20200409, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430880

RESUMO

'The apportionment of human diversity' (1972) is the most highly cited research article published by geneticist Richard Lewontin in his career. This study's primary result-that most genetic diversity in humans can be accounted for by within-population differences, not between-population differences-along with Lewontin's outspoken, politically charged interpretations thereof, has become foundational to the scientific and cultural discourse pertaining to human genetic variation. The article has an unusual bibliometric trajectory in that it is much more salient in the bibliographic record today compared to the first 20 years after its publication. Here, we highlight four factors that may have played a role in shaping the paper's fame: (i) citations in influential publications across several disciplines; (ii) Lewontin's own popular books and media appearances; (iii) the renaissance of population genetics research of the early 1990s; and (iv) the serendipitous collision of scientific progress, influential books and papers, and heated controversies around the year 1994. We conclude with an analysis of Twitter data to characterize the communities and conversations that continue to keep this study at the centre of discussions about race and genetics, prompting new challenges for scientists who have inherited Lewontin's legacy. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.


Assuntos
Genética Populacional , Humanos
16.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018888

RESUMO

In the past decade, several studies have estimated the human per-generation germline mutation rate using large pedigrees. More recently, estimates for various nonhuman species have been published. However, methodological differences among studies in detecting germline mutations and estimating mutation rates make direct comparisons difficult. Here, we describe the many different steps involved in estimating pedigree-based mutation rates, including sampling, sequencing, mapping, variant calling, filtering, and appropriately accounting for false-positive and false-negative rates. For each step, we review the different methods and parameter choices that have been used in the recent literature. Additionally, we present the results from a 'Mutationathon,' a competition organized among five research labs to compare germline mutation rate estimates for a single pedigree of rhesus macaques. We report almost a twofold variation in the final estimated rate among groups using different post-alignment processing, calling, and filtering criteria, and provide details into the sources of variation across studies. Though the difference among estimates is not statistically significant, this discrepancy emphasizes the need for standardized methods in mutation rate estimations and the difficulty in comparing rates from different studies. Finally, this work aims to provide guidelines for computational and statistical benchmarks for future studies interested in identifying germline mutations from pedigrees.


Assuntos
Técnicas Genéticas , Mutação em Linhagem Germinativa , Macaca mulatta/genética , Taxa de Mutação , Animais , Técnicas Genéticas/instrumentação , Células Germinativas , Laboratórios , Linhagem , Padrões de Referência
17.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33983415

RESUMO

Great ape clades exhibit variation in the relative mutation rates of different three-base-pair genomic motifs, with closely related species having more similar mutation spectra than distantly related species. This pattern cannot be explained by classical demographic or selective forces, but imply that DNA replication fidelity has been perturbed in different ways on each branch of the great ape phylogeny. Here, we use whole-genome variation from 88 great apes to investigate whether these species' mutation spectra are broadly differentiated across the entire genome, or whether mutation spectrum differences are driven by DNA compartments that have particular functional features or chromatin states. We perform principal component analysis (PCA) and mutational signature deconvolution on mutation spectra ascertained from compartments defined by features including replication timing and ancient repeat content, finding evidence for consistent species-specific mutational signatures that do not depend on which functional compartments the spectra are ascertained from. At the same time, we find that many compartments have their own characteristic mutational signatures that appear stable across the great ape phylogeny. For example, in a mutation spectrum PCA compartmentalized by replication timing, the second principal component explaining 21.2% of variation separates all species' late-replicating regions from their early-replicating regions. Our results suggest that great ape mutation spectrum evolution is not driven by epigenetic changes that modify mutation rates in specific genomic regions, but instead by trans-acting mutational modifiers that affect mutagenesis across the whole genome fairly uniformly.


Assuntos
Hominidae , Animais , Período de Replicação do DNA , Epigênese Genética , Hominidae/genética , Mutação , Filogenia
18.
Elife ; 102021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523420

RESUMO

Although studies of Saccharomyces cerevisiae have provided many insights into mutagenesis and DNA repair, most of this work has focused on a few laboratory strains. Much less is known about the phenotypic effects of natural variation within S. cerevisiae's DNA repair pathways. Here, we use natural polymorphisms to detect historical mutation spectrum differences among several wild and domesticated S. cerevisiae strains. To determine whether these differences are likely caused by genetic mutation rate modifiers, we use a modified fluctuation assay with a CAN1 reporter to measure de novo mutation rates and spectra in 16 of the analyzed strains. We measure a 10-fold range of mutation rates and identify two strains with distinctive mutation spectra. These strains, known as AEQ and AAR, come from the panel's 'Mosaic beer' clade and share an enrichment for C > A mutations that is also observed in rare variation segregating throughout the genomes of several Mosaic beer and Mixed origin strains. Both AEQ and AAR are haploid derivatives of the diploid natural isolate CBS 1782, whose rare polymorphisms are enriched for C > A as well, suggesting that the underlying mutator allele is likely active in nature. We use a plasmid complementation test to show that AAR and AEQ share a mutator allele in the DNA repair gene OGG1, which excises 8-oxoguanine lesions that can cause C > A mutations if left unrepaired.


Assuntos
Variação Genética , Mutação Puntual , Saccharomyces cerevisiae/genética , Alelos , Sistemas de Transporte de Aminoácidos Básicos/genética , Reparo do DNA , Diploide , Teste de Complementação Genética , Haploidia , Taxa de Mutação , Fenótipo , Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética
19.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016747

RESUMO

As populations boom and bust, the accumulation of genetic diversity is modulated, encoding histories of living populations in present-day variation. Many methods exist to decode these histories, and all must make strong model assumptions. It is typical to assume that mutations accumulate uniformly across the genome at a constant rate that does not vary between closely related populations. However, recent work shows that mutational processes in human and great ape populations vary across genomic regions and evolve over time. This perturbs the mutation spectrum (relative mutation rates in different local nucleotide contexts). Here, we develop theoretical tools in the framework of Kingman's coalescent to accommodate mutation spectrum dynamics. We present mutation spectrum history inference (mushi), a method to perform nonparametric inference of demographic and mutation spectrum histories from allele frequency data. We use mushi to reconstruct trajectories of effective population size and mutation spectrum divergence between human populations, identify mutation signatures and their dynamics in different human populations, and calibrate the timing of a previously reported mutational pulse in the ancestors of Europeans. We show that mutation spectrum histories can be placed in a well-studied theoretical setting and rigorously inferred from genomic variation data, like other features of evolutionary history.


Assuntos
Frequência do Gene/genética , Genética Populacional/estatística & dados numéricos , Modelos Genéticos , Mutação/genética , Animais , Variação Genética/genética , Genômica , Hominidae/genética , Humanos , Taxa de Mutação , Densidade Demográfica
20.
PLoS Biol ; 18(9): e3000860, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960891

RESUMO

Engagement with scientific manuscripts is frequently facilitated by Twitter and other social media platforms. As such, the demographics of a paper's social media audience provide a wealth of information about how scholarly research is transmitted, consumed, and interpreted by online communities. By paying attention to public perceptions of their publications, scientists can learn whether their research is stimulating positive scholarly and public thought. They can also become aware of potentially negative patterns of interest from groups that misinterpret their work in harmful ways, either willfully or unintentionally, and devise strategies for altering their messaging to mitigate these impacts. In this study, we collected 331,696 Twitter posts referencing 1,800 highly tweeted bioRxiv preprints and leveraged topic modeling to infer the characteristics of various communities engaging with each preprint on Twitter. We agnostically learned the characteristics of these audience sectors from keywords each user's followers provide in their Twitter biographies. We estimate that 96% of the preprints analyzed are dominated by academic audiences on Twitter, suggesting that social media attention does not always correspond to greater public exposure. We further demonstrate how our audience segmentation method can quantify the level of interest from nonspecialist audience sectors such as mental health advocates, dog lovers, video game developers, vegans, bitcoin investors, conspiracy theorists, journalists, religious groups, and political constituencies. Surprisingly, we also found that 10% of the preprints analyzed have sizable (>5%) audience sectors that are associated with right-wing white nationalist communities. Although none of these preprints appear to intentionally espouse any right-wing extremist messages, cases exist in which extremist appropriation comprises more than 50% of the tweets referencing a given preprint. These results present unique opportunities for improving and contextualizing the public discourse surrounding scientific research.


Assuntos
Bases de Dados como Assunto , Publicações , Ciência , Mudança Social , Mídias Sociais , Academias e Institutos/organização & administração , Academias e Institutos/normas , Academias e Institutos/estatística & dados numéricos , Acesso à Informação , Bases de Dados como Assunto/organização & administração , Bases de Dados como Assunto/normas , Bases de Dados como Assunto/estatística & dados numéricos , Processamento Eletrônico de Dados/organização & administração , Processamento Eletrônico de Dados/normas , Processamento Eletrônico de Dados/estatística & dados numéricos , Humanos , Competência em Informação , Internet/organização & administração , Internet/normas , Internet/estatística & dados numéricos , Ativismo Político , Publicações/classificação , Publicações/normas , Publicações/estatística & dados numéricos , Publicações/provisão & distribuição , Ciência/organização & administração , Ciência/normas , Ciência/estatística & dados numéricos , Mídias Sociais/organização & administração , Mídias Sociais/normas , Mídias Sociais/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...