Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(9): 1194-1205, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38598309

RESUMO

Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.


Assuntos
Hordeum , Hordeum/enzimologia , Hordeum/genética , Especificidade por Substrato , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glucanos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/química , Mutagênese , beta-Glucanas/metabolismo
2.
Planta ; 257(2): 39, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650257

RESUMO

MAIN CONCLUSION: The xyloglucans of all aquatic Araceae species examined had unusual structures compared with those of other non-commelinid monocotyledon families previously examined. The aquatic Araceae species Lemna minor was earlier shown to have xyloglucans with a different structure from the fucogalactoxyloglucans of other non-commelinid monocotyledons. We investigated 26 Araceae species (including L. minor), from five of the seven subfamilies. All seven aquatic species examined had xyloglucans that were unusual in having one or two of three features: < 77% XXXG core motif [L. minor (Lemnoideae) and Orontium aquaticum (Orontioideae)]; no fucosylation [L. minor (Lemnoideae), Cryptocoryne aponogetonifolia, and Lagenandra ovata (Aroideae, Rheophytes clade)]; and > 14% oligosaccharide units with S or D side chains [Spirodela polyrhiza and Landoltia punctata (Lemnoideae) and Pistia stratiotes (Aroideae, Dracunculus clade)]. Orontioideae and Lemnoideae are the two most basal subfamilies, with all species being aquatic, and Aroideae is the most derived. Two terrestrial species [Dieffenbachia seguine and Spathicarpa hastifolia (Aroideae, Zantedeschia clade)] also had xyloglucans without fucose indicating this feature was not unique to aquatic species.


Assuntos
Araceae , Glucanos , Xilanos , Oligossacarídeos
3.
Front Plant Sci ; 12: 762121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880888

RESUMO

The cell walls of forage chicory (Cichorium intybus) leaves are known to contain high proportions of pectic polysaccharides. However, little is known about the distribution of pectic polysaacharides among walls of different cell types/tissues and within walls. In this study, immunolabelling with four monoclonal antibodies was used to map the distribution of pectic polysaccharides in the cell walls of the laminae and midribs of these leaves. The antibodies JIM5 and JIM7 are specific for partially methyl-esterified homogalacturonans; LM5 and LM6 are specific for (1→4)-ß-galactan and (1→5)-α-arabinan side chains, respectively, of rhamnogalacturonan I. All four antibodies labelled the walls of the epidermal cells with different intensities. JIM5 and JIM7, but not LM5 or LM6, labelled the middle lamella, tricellular junctions, and the corners of intercellular spaces of ground, xylem and phloem parenchyma. LM5, but not LM6, strongly labelled the walls of the few sclerenchyma fibres in the phloem of the midrib and lamina vascular bundles. The LM5 epitope was absent from some phloem parenchyma cells. LM6, but not LM5, strongly labelled the walls of the stomatal guard cells. The differential distribution of pectic epitopes among walls of different cell types and within walls may reflect the deposition and modification of these polysaccharides which are involved in cell wall properties and cell development.

4.
Planta ; 254(1): 2, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085144

RESUMO

MAIN CONCLUSION: Heteromannans are the predominant hemicelluloses in the gametophytic stem of the moss Hypnodendron menziesii and occur in the walls of all cell types Little is known about the cell-wall polysaccharides of mosses. Monosaccharide analysis of cell walls isolated from the stem of the umbrella moss Hypnodendron menziesii was consistent with heteromannans, probably galactoglucomannans, being the predominant hemicellulosic polysaccharides in the walls. Immunofluorescence and immunogold microscopy with the monoclonal antibody LM21, specific for heteromannans, showed that these polysaccharides were present in the walls of all stem cell types. These cell types, except the hydroids, have secondary walls. Experiments in which sections were pre-treated with 0.1 M sodium carbonate and with the enzyme pectate lyase indicated that the heteromannans have O-acetyl groups that limit LM21 binding and the cell walls contain pectic homogalacturonan that masks detection of heteromannans using LM21. Therefore, to fully detect heteromannans in the cell walls, it was essential to use these pre-treatments to remove the O-acetyl groups from the heteromannans and pectic homogalacturonan from the cell walls. Fluorescence microscopy experiments with a second monoclonal antibody, LM22, also specific for heteromannans, showed similar results, but the binding was considerably weaker than with LM21, possibly as a result of subtle structural differences in the epitopes of the two antibodies. Although heteromannans occur abundantly in the cell walls of many species in basal lineages of tracheophytes, prior to the present study, research on the distribution of these polysaccharides in the walls of different cell types in mosses was confined to the model species Physcomitrium patens.


Assuntos
Briófitas , Polissacarídeos , Parede Celular , Células Germinativas Vegetais , Pectinas
5.
Methods Mol Biol ; 2149: 203-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617937

RESUMO

A knowledge of the mobilities of the polysaccharides or parts of polysaccharides in a cell-wall preparation provides information about possible molecular interactions among the polysaccharides in the cell wall and the relative locations of polysaccharides within the cell wall. A number of solid-state 13C NMR techniques have been developed that can be used to investigate different types of polysaccharide mobilities: rigid, semirigid, mobile, and highly mobile. In this chapter techniques are described for obtaining spectra from primary cell-wall preparations using CP/MAS, proton-rotating frame, proton spin-spin, spin-echo relaxation spectra and single-pulse excitation. We also describe how proton spin relaxation editing can be used to obtain subspectra for cell-wall polysaccharides of different mobilities, and how 2D and 3D solid-state NMR experiments have recently been applied to plant cell walls.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Parede Celular/química , Células Vegetais/química , Difusão , Polissacarídeos/química , Prótons , Marcadores de Spin
6.
Planta ; 250(6): 1819-1832, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31463558

RESUMO

MAIN CONCLUSION: During development, cellulose microfibrils in collenchyma walls become increasingly longitudinal, as determined by small-angle X-ray scattering, despite the walls maintaining a fine structure indicative of a crossed-polylamellate structure. Collenchyma cells have thickened primary cell walls and provide mechanical support during plant growth. During their development, these cells elongate and their walls thicken considerably. We used microscopy and synchrotron small-angle X-ray scattering to study changes in the orientations of cellulose microfibrils that occur during development in the walls of collenchyma cells present in peripheral strands in celery (Apium graveolens) petioles. Transmission electron microscopy showed that the walls consisted of many lamellae (polylamellate), with lamellae containing longitudinally oriented cellulose microfibrils alternating with microfibrils oriented at higher angles. The lamellae containing longitudinally oriented microfibrils predominated at later stages of development. Nevertheless, transmission electron microscopy of specially stained, oblique sections provided evidence that the cellulose microfibrils were ordered throughout development as crossed-polylamellate structures. These results are consistent with our synchrotron small-angle X-ray scattering results that showed the cellulose microfibrils become oriented increasingly longitudinally during development. Some passive reorientation of cellulose microfibrils may occur during development, but extensive reorientation throughout the wall would destroy ordered structures. Atomic force microscopy and field emission scanning electron microscopy were used to determine the orientations of newly deposited cellulose microfibrils. These were found to vary widely among different cells, which could be consistent with the formation of crossed-polylamellate structures. These newly deposited cellulose microfibrils are deposited in a layer of pectic polysaccharides that lies immediately outside the plasma membrane. Overall, our results show that during development of collenchyma walls, the cellulose microfibrils become increasingly longitudinal in orientation, yet organized, crossed-polylamellate structures are maintained.


Assuntos
Apium/crescimento & desenvolvimento , Parede Celular/metabolismo , Celulose/metabolismo , Microfibrilas/metabolismo , Apium/citologia , Apium/metabolismo , Apium/ultraestrutura , Parede Celular/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Polymers (Basel) ; 11(2)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30960338

RESUMO

Xylans with a variety of structures have been characterised in green algae, including chlorophytes (Chlorophyta) and charophytes (in the Streptophyta), and red algae (Rhodophyta). Substituted 1,4-ß-d-xylans, similar to those in land plants (embryophytes), occur in the cell wall matrix of advanced orders of charophyte green algae. Small proportions of 1,4-ß-d-xylans have also been found in the cell walls of some chlorophyte green algae and red algae but have not been well characterised. 1,3-ß-d-Xylans occur as triple helices in microfibrils in the cell walls of chlorophyte algae in the order Bryopsidales and of red algae in the order Bangiales. 1,3;1,4-ß-d-Xylans occur in the cell wall matrix of red algae in the orders Palmariales and Nemaliales. In the angiosperm Arabidopsis thaliana, the gene IRX10 encodes a xylan 1,4-ß-d-xylosyltranferase (xylan synthase), and, when heterologously expressed, this protein catalysed the production of the backbone of 1,4-ß-d-xylans. An orthologous gene from the charophyte green alga Klebsormidium flaccidum, when heterologously expressed, produced a similar protein that was also able to catalyse the production of the backbone of 1,4-ß-d-xylans. Indeed, it is considered that land plant xylans evolved from xylans in ancestral charophyte green algae. However, nothing is known about the biosynthesis of the different xylans found in chlorophyte green algae and red algae. There is, thus, an urgent need to identify the genes and enzymes involved.

8.
Plant Physiol Biochem ; 139: 428-434, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30991260

RESUMO

The xyloglucans of monocotyledons are known to vary in the abundance of fucosylated side chains, with most commelinid monocotyledons having xyloglucans with lower proportions than non-commelinid monocotyledons. In many commelinid species, and some non-commelinid species that have lower proportions of fucosylated side chains, these side chains have been shown to be cell-type specific. To determine whether it is just the fucosylated side chains that are cell-type specific, or whether xyloglucan is cell-type specific in these species, we used the monoclonal antibody LM15 in conjunction with immmunofluorescence microscopy. We examined the distribution of cell-wall labelling among cell types in these species. The primary walls of all cell types were shown to contain xyloglucans in all species that had cell-type specific distributions of fucosylated side chains. This indicates that it is the fucosylated side chains of xyloglucans that is cell-type specific. Although the functional significance of xyloglucan fucosylation remains unknown, such cell-type specificity supports hypotheses that the fucosylated side chains may indeed have a functional role within the cell wall.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Microscopia de Fluorescência/métodos , Xilanos/metabolismo , Anticorpos Monoclonais , Glicosilação
9.
BMC Plant Biol ; 19(1): 81, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782133

RESUMO

BACKGROUND: Collenchyma cells occur widely in eudicotyledons and provide mechanical support for growing organs. At maturity, the cells are elongated and have thick, non-lignified walls, which in celery contain cellulose and pectic polysaccharides, together with xyloglucans and heteroxylans and heteromannans. A previous study suggested that at least some of the collenchyma cell wall in celery is laid down after expansion has stopped and is thus secondary. In the present study, we re-examined this. We used chemical analysis and immunomicroscopy to determine changes in the polysaccharide compositions of these walls during development. Additionally, solid-state NMR spectroscopy was used to examine changes in polysaccharide mobilities during development. RESULTS: We showed the collenchyma walls are deposited only during cell expansion, i.e. they are primary walls. During cell-wall development, analytical and immunomicroscopy studies showed that within the pectic polysaccharides there were no overall changes in the proportions of homogalacturonans, but there was a decrease in their methyl esterification. There was also a decrease in the proportions of the (1 → 5)-α-L-arabinan and (1 → 4)-ß-D-galactan side chains of rhamnogalacturonan I. The proportions of cellulose increased, and to a lesser extent those of xyloglucans and heteroxylans. Immunomicroscopy showed the homogalacturonans occurred throughout the walls and were most abundant in the middle lamellae and middle lamella junctions. Although the (1 → 4)-ß-D-galactans occurred only in the rest of the walls, some of the (1 → 5)-α-L-arabinans also occurred in the middle lamellae and middle lamella junctions. During development, the location of the xyloglucans changed, being confined to the middle lamellae and middle lamella junctions early on, but later occurred throughout the walls. The location of the heteroxylans also changed, occurring mostly in the outer walls in young cells, but were more widely distributed in mature cells. Solid-state NMR spectroscopy showed that particularly cellulose, but also homogalacturonans, decreased in mobility during development. CONCLUSIONS: Our studies showed that celery collenchyma cell walls are primary and that during their development the polysaccharides undergo dynamic changes. Changes in the mobilities of cellulose and homogalacturonans were consistent with the cell walls becoming stiffer as expansion ceases.


Assuntos
Apium/crescimento & desenvolvimento , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Apium/citologia , Apium/metabolismo , Celulose/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Pectinas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura
10.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424541

RESUMO

When the term dietary fibre was first coined, over sixty years ago, it only referred to plant cell walls in the diet. [...].


Assuntos
Fibras na Dieta , Saúde , Dieta , Fermentação , Microbioma Gastrointestinal , Humanos , Prebióticos
11.
Plant Physiol ; 177(2): 513-521, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29724771

RESUMO

Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p-coumarate. The Poaceae, or grass family, is a member of this group, and most of the p-coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p-coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases.


Assuntos
Parede Celular/química , Lignina/metabolismo , Magnoliopsida/química , Propionatos/metabolismo , Acilação , Commelinaceae/química , Commelinaceae/citologia , Cotilédone/citologia , Ácidos Cumáricos , Hidrólise , Lignina/química , Espectroscopia de Ressonância Magnética , Magnoliopsida/citologia , Parabenos/química , Parabenos/metabolismo , Células Vegetais/química , Células Vegetais/metabolismo , Propionatos/química , Zingiberales/química , Zingiberales/citologia
12.
Plants (Basel) ; 7(1)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495536

RESUMO

Variable-pressure scanning electron microscopy was used to investigate the dimensional changes in longitudinal, tangential and radial directions, on wetting and drying, of tracheids of opposite wood (OW) and three grades of compression woods (CWs), including severe CW (SCW) and two grades of mild compression wood (MCW) (MCW1 and MCW2) in corewood of radiata pine (Pinus radiata) saplings. The CW was formed on the underside and OW on the upper side of slightly tilted stems. In the longitudinal direction, the shrinkage of SCW tracheids was ~300% greater than that of OW tracheids, with the shrinkage of the MCW1 and MCW2 tracheids being intermediate. Longitudinal swelling was also investigated and hysteresis was demonstrated for the tracheids of all corewood types, with the extent of hysteresis increasing with CW severity. A statistical association was found between longitudinal shrinkage and the content of lignin and galactosyl residues in the cell-wall matrix. The galactosyl residues are present mostly as (1→4)-ß-galactans, which are known to have a high capacity for binding water and swell on hydration. The small proportions of (1→3)-ß-glucans in the CWs have similar properties. These polysaccharides may play a functional role in the longitudinal shrinking and swelling of CW tracheids. Tangential shrinkage of tracheids was greater than radial shrinkage but both were greatest for OW and least for SCW, with the MCW1 and MCW2 being intermediate.

13.
Int J Biol Macromol ; 113: 507-514, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458099

RESUMO

Near infrared (NIR) spectroscopy coupled with partial least squares (PLS-1) regression was used to predict the lignin contents and monosaccharide compositions of milled wood of Pinus radiata. The effects of particle size and moisture content were investigated by collecting NIR spectra of four sample types: large (<0.422mm) and small (<0.178mm) particles, in both ambient and dry conditions. PLS-1 models were constructed using mixtures of compression wood (CW) and opposite wood (OW) that provided a linear range of cell-wall compositions. Our results show that lignin contents and monosaccharide compositions of pure CWs and OWs can be successfully predicted using NIR spectra of all four sample types. However, large particles in ambient conditions have the most efficient preparation and the standard error (SE) values for lignin (2.10%), arabinose (0.34%), xylose (1.33%), galactose (2.54%), glucose (6.98%), mannose (1.48%), galacturonic acid (0.22%), glucuronic acid (0.06%), and 4-O-methylglucuronic acid (0.25%) were achieved.


Assuntos
Parede Celular/química , Lignina/química , Monossacarídeos/análise , Pinus/citologia , Espectroscopia de Luz Próxima ao Infravermelho , Madeira/química , Análise dos Mínimos Quadrados , Tamanho da Partícula , Pinus/classificação
14.
Plant Physiol ; 175(3): 1058-1067, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28894022

RESUMO

The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant's defense system.


Assuntos
Lignina/metabolismo , Phoeniceae/metabolismo , Folhas de Planta/metabolismo , Parede Celular/metabolismo , Cromatografia em Gel , Lignina/isolamento & purificação , Espectroscopia de Ressonância Magnética , Espanha
15.
BMC Plant Biol ; 17(1): 104, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619057

RESUMO

BACKGROUND: Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. RESULTS: This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na2CO3, 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na2CO3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. CONCLUSIONS: Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.


Assuntos
Apium/química , Parede Celular/química , Polissacarídeos/análise , Peptídeos Catiônicos Antimicrobianos , Apium/citologia , Apium/crescimento & desenvolvimento , Glicosilação , Monossacarídeos/análise , Células Vegetais/química , Proteínas de Plantas , Caules de Planta/química
16.
Plant Physiol Biochem ; 118: 187-198, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28646704

RESUMO

Tilted stems of softwoods form compression wood (CW) and opposite wood (OW) on their lower and upper sides, respectively. More is known about the most severe form of CW, severe CW (SCW), but mild CWs (MCWs) also occur widely. Two grades of MCWs, MCW1 and MCW2, as well as SCW and OW were identified in the stems of radiata pine (Pinus radiata) that had been slightly tilted. The four wood types were identified by the distribution of lignin in the tracheid walls determined by fluorescence microscopy. A solution of the fluorescent dye acridine orange (AO) (0.02% at pH 6 or 7) was shown to metachromatically stain the tracheid walls and can also be used to determine lignin distribution. The lignified walls fluoresced orange to yellow depending on the lignin concentration. Microscopically well-characterized discs (0.5 mm diameter) of the wood types were used to determine lignin concentrations and lignin monomer compositions using the acetyl bromide method and thioacidolysis, respectively. Lignin concentration and the proportion of p-hydroxyphenyl units (H-units) relative to guaiacyl (G-units) increased with CW severity, with <1% H-units in OW and up to 14% in SCW. Lignin H-units can be used as a marker for CW and CW severity. Similar discs were also examined by Raman and FTIR micro-spectroscopies coupled with principal component analysis (PCA) to determine if these techniques can be used to differentiate the four different wood types. Both techniques were able to do this, particularly Raman micro-spectroscopy.


Assuntos
Parede Celular/metabolismo , Lignina/metabolismo , Pinus/metabolismo , Madeira/metabolismo , Pinus/citologia , Madeira/citologia
17.
Sci Adv ; 2(10): e1600393, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27757415

RESUMO

Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transferase into commercially relevant poplar. We report that various angiosperm species might have convergently evolved to natively produce lignins that incorporate monolignol ferulate conjugates. We show that this activity may be accomplished by a BAHD feruloyl-coenzyme A monolignol transferase, OsFMT1 (AT5), in rice and its orthologs in other monocots.

18.
BMC Plant Biol ; 16(1): 194, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604684

RESUMO

BACKGROUND: Compression wood (CW) forms on the underside of tilted stems of coniferous gymnosperms and opposite wood (OW) on the upperside. The tracheid walls of these wood types differ structurally and chemically. Although much is known about the most severe form of CW, severe CW (SCW), mild CWs (MCWs), also occur, but less is known about them. In this study, tracheid wall structures and compositions of two grades of MCWs (1 and 2) and SCW were investigated and compared with OW in slightly tilted radiata pine (Pinus radiata) stems. RESULTS: The four wood types were identified by the distribution of lignin in their tracheid walls. Only the tracheid walls of OW and MCW1 had a S3 layer and this was thin in MCW1. The tracheid walls of only SCW had a S2 layer with helical cavities in the inner region (S2i). Using immunomicroscopy, (1 → 4)-ß-D-galactans and (1 → 3)-ß-D-glucans were detected in the tracheid walls of all CWs, but in only trace amounts in OW. The (1 → 4)-ß-D-galactans were located in the outer region of the S2 layer, whereas the (1 → 3)-ß-D-glucans were in the inner S2i region. The areas and intensities of labelling increased with CW severity. The antibody for (1 → 4)-ß-D-galactans was also used to identify the locations and relative amounts of these galactans in whole stem cross sections based on the formation of an insoluble dye. Areas containing the four wood types were clearly differentiated depending on colour intensity. The neutral monosaccharide compositions of the non-cellulosic polysaccharides of these wood types were determined on small, well defined discs, and showed the proportion of galactose was higher for CWs and increased with severity. CONCLUSION: The presence of an S3 wall layer is a marker for very MCW and the presence of helical cavities in the S2 wall layer for SCW. The occurrence and proportions of (1 → 4)-ß-D-galactans and (1 → 3)-ß-D-glucans can be used as markers for CW and its severity. The proportions of galactose were consistent with the labelling results for (1 → 4)-ß-D-galactans.


Assuntos
Parede Celular/química , Galactanos/metabolismo , Glucanos/metabolismo , Pinus/metabolismo , Parede Celular/metabolismo , Galactanos/química , Pinus/química , Madeira/química , Madeira/metabolismo
19.
Plant J ; 88(6): 1046-1057, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27553717

RESUMO

Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as an authentic monomer in grass lignification that likely functions as a nucleation site. It is linked onto lignin as an aryl alkyl ether by radical coupling with monolignols or their acylated analogs. However, the level of tricin that incorporates into lignin remains unclear. Herein, three lignin characterization methods: acidolysis; thioacidolysis; and derivatization followed by reductive cleavage; were applied to quantitatively assess the amount of lignin-integrated tricin. Their efficiencies at cleaving the tricin-(4'-O-ß)-ether bonds and the degradation of tricin under the corresponding reaction conditions were evaluated. A hexadeuterated tricin analog was synthesized as an internal standard for accurate quantitation purposes. Thioacidolysis proved to be the most efficient method, liberating more than 91% of the tricin with little degradation. A survey of different seed-plant species for the occurrence and content of tricin showed that it is widely distributed in the lignin from species in the family Poaceae (order Poales). Tricin occurs at low levels in some commelinid monocotyledon families outside the Poaceae, such as the Arecaceae (the palms, order Arecales) and Bromeliaceae (Poales), and the non-commelinid monocotyledon family Orchidaceae (Orchidales). One eudicotyledon was found to have tricin (Medicago sativa, Fabaceae). The content of lignin-integrated tricin is much higher than the extractable tricin level in all cases. Lignins, including waste lignin streams from biomass processing, could therefore provide a large and alternative source of this valuable flavone, reducing the costs, and encouraging studies into its application beyond its current roles.


Assuntos
Flavonoides/metabolismo , Lignina/metabolismo , Filogenia , Cromatografia Líquida , Espectrometria de Massas , Poaceae/classificação , Poaceae/metabolismo
20.
Int J Mol Sci ; 17(6)2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314323

RESUMO

Intestinal dysbiosis is thought to be an important cause of disease progression and the gastrointestinal symptoms experienced in patients with inflammatory bowel disease (IBD). Inflammation appears to be a major contributor in perpetuating a dysregulated gut microbiota. Although current drug therapies can significantly induce and maintain disease remission, there is no cure for these diseases. Nevertheless, ongoing human studies investigating dietary fibre interventions may potentially prove to exert beneficial outcomes for IBD. Postulated mechanisms include direct interactions with the gut mucosa through immunomodulation, or indirectly through the microbiome. Component species of the microbiome may degrade dietary-fibre polysaccharides and ferment the products to form short-chain fatty acids such as butyrate. Prebiotic dietary fibres may also act more directly by altering the composition of the microbiome. Longer term benefits in reducing the risk of more aggressive disease or colorectal cancer may require other dietary fibre sources such as wheat bran or psyllium. By critically examining clinical trials that have used dietary fibre supplements or dietary patterns containing specific types or amounts of dietary fibres, it may be possible to assess whether varying the intake of specific dietary fibres may offer an efficient treatment for IBD patients.


Assuntos
Fibras na Dieta/uso terapêutico , Doenças Inflamatórias Intestinais/dietoterapia , Humanos , Prebióticos , Psyllium/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...