Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 82(4): 614-22, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22745359

RESUMO

Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 µM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action.


Assuntos
Ácidos Anacárdicos/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Células 3T3-L1 , Ácidos Anacárdicos/isolamento & purificação , Anacardium/química , Animais , Catálise , Inibidores de Metaloproteinases de Matriz/isolamento & purificação , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
J Mol Biol ; 391(1): 1-11, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19501598

RESUMO

The mitogen-activated protein (MAP) kinase protein family has a critical role in cellular signaling events, with MAP kinase p38alpha acting in inflammatory processes and being an important drug discovery target. MAP kinase drug design efforts have focused on small-molecule inhibitors of the ATP catalytic site, which exhibit dose-limiting adverse effects. Therefore, characterizing other potential sites that bind substrates, inhibitors, or allosteric effectors is of great interest. Here, we present the crystal structure of human p38alpha MAP kinase, which has a lead compound bound both in the active site and in the lipid-binding site of the C-terminal cap. This C-terminal cap is formed from an extension to the kinase fold, unique to the MAP kinase and cyclin-dependent kinase families and glycogen synthase kinase 3. Binding of this lead, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine, to wild-type p38alpha induces movement of the C-terminal cap region, creating a hydrophobic pocket centered around residue Trp197. Computational analysis of this C-terminal domain pocket indicates notable flexibility for potentially binding different-shaped compounds, including lipids, oxidized arachidonic acid species such as leukotrienes, and small-molecule effectors. Furthermore, our structural results defining the open p38alpha C-lobe pocket provide a detailed framework for the design of novel small molecules with affinities comparable to active-site binders: to bind and potentially modulate the shape and activity of p38alpha in predetermined ways. Moreover, these results and analyses of p38alpha suggest strategies for designing specific binding compounds applicable to other MAP kinases, as well as the cyclin-dependent kinase family and glycogen synthase kinase 3beta that also utilize the C-terminal insert in their interactions.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína
3.
Biochemistry ; 44(51): 16886-95, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16363802

RESUMO

Substrate channeling in the tryptophan synthase bienzyme complex is regulated by allosteric signals between the alpha- and beta-active sites acting over a distance of 25 A. At the alpha-site, indole is cleaved from 3-indole-D-glycerol 3'-phosphate (IGP) and is channeled to the beta-site via a tunnel. Harris and Dunn [Harris, R. M., and Dunn, M. F. (2002) Biochemistry 41, 9982-9990] showed that when the novel amino acid, dihydroiso-L-tryptophan (DIT), reacts with the beta-site, the alpha-aminoacrylate Schiff base, E(A-A), is formed and the enzyme releases indoline. The indoline produced exits the enzyme via the tunnel out the open alpha-site. When the alpha-site ligand (ASL) alpha-D,L-glycerol 3-phosphate (GP) binds and closes the alpha-site, indoline generated in the DIT reaction is trapped for a short period of time as the quinonoid intermediate in rapid equilibrium with bound indoline and the E(A-A) intermediate before leaking out of the closed enzyme. In this work, we use the DIT reaction and a new, high-affinity, ASL, N-(4-trifluoromethoxybenzenesulfonyl)-2-amino-1-ethyl phosphate (F9), to explore the mechanism of ligand leakage from the closed enzyme. It was found that F9 binding to the alpha-site is significantly more effective than GP in trapping indoline in the DIT reaction; however, leakage of indoline from the enzyme into solution still occurs. It was also found that a combination of benzimidazole (BZI) and GP provided even more effective trapping than F9. The new experiments with F9 and the combination of BZI and GP provide evidence that the coincident binding of GP and BZI at the alpha-site exhibits a strong synergistic effect that greatly slows the leakage of indoline in the DIT reaction and enhances the trapping effect. This synergism functions to tightly close the alpha-site and sends an allosteric signal that stabilizes the closed structure of the beta-site. These studies also support a mechanism for the escape of indoline through the alpha-site that is limited by ASL dissociation.


Assuntos
Modelos Químicos , Triptofano Sintase/química , Alanina/análogos & derivados , Alanina/química , Regulação Alostérica , Bactérias/enzimologia , Benzimidazóis/química , Benzimidazóis/metabolismo , Domínio Catalítico , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Indóis/química , Ligantes , Modelos Moleculares , Ligação Proteica , Espectrofotometria , Triptofano/análogos & derivados , Triptofano/química , Triptofano Sintase/metabolismo
4.
Biochemistry ; 41(31): 9982-90, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146962

RESUMO

The tryptophan synthase bienzyme complex channels substrate indole between the alpha- and beta-sites via a 25 A long interconnecting tunnel. Channeling efficiency is dependent upon a conformational switch in alphabeta-dimeric units between open conformations of low activity to which substrates bind and closed conformations of high activity wherein substrates react. In experiments designed to gain a better understanding of the linkage between chemical steps and conformational transitions in the catalytic cycle, the novel amino acid dihydroiso-L-tryptophan (DIT) was used as an analogue of L-Trp. In the forward reaction (indoline + L-Ser) to synthesize DIT, the quinonoid species, E(Q)(indoline), is formed quickly, while in the reverse reaction (DIT cleavage), the accumulation of E(Q)(indoline) occurs very slowly. Nevertheless, when the alpha-site substrate analogue alpha-D,L-glycerol phosphate (GP) is bound, DIT cleavage was found to give a rapid formation and dissipation of E(Q)(indoline) followed by a very slow reappearance of E(Q)(indoline). This result led to the conclusion that the reaction of DIT proceeds quickly through the quinonoid state to give indoline and the alpha-aminoacrylate Schiff base, E(A-A), both in the absence and in the presence of GP. In the absence of GP the slow conversion of E(A-A) to pyruvate and ammonium ion limits the rate of accumulation of free indoline and therefore the rate of buildup of E(Q)(indoline). However, when GP is bound to the alpha-site, the indoline generated by DIT cleavage in the first turnover is trapped within the enzyme complex, shifting the equilibrium distribution strongly in favor of E(Q)(indoline) as a consequence of the high local concentration of sequestered indoline. This sequestering is the result of a switching of alphabeta-subunit pairs to a closed conformation when GP binds to the alpha-site and E(A-A) and/or E(Q)(indoline) is formed at the beta-site, thereby trapping indoline inside. The decay of the transiently formed E(Q)(indoline) occurs due to leakage of indoline from the closed system.


Assuntos
Sódio/metabolismo , Triptofano Sintase/química , Regulação Alostérica , Ativação Enzimática , Cinética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Triptofano Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...