Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38260339

RESUMO

Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from one to 47 days, with an 84% average recovery rate.

2.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37662298

RESUMO

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

3.
Science ; 382(6670): 566-573, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917713

RESUMO

The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including maplike representations of familiar environments. However, whether representations in such "cognitive maps" can be volitionally accessed is unknown. We developed a brain-machine interface to test whether rats can do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner. We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation and planning, and imagination and opens up possibilities for high-level neural prosthetics that use hippocampal representations.


Assuntos
Mapeamento Encefálico , Interfaces Cérebro-Computador , Hipocampo , Volição , Animais , Ratos , Hipocampo/fisiologia , Imaginação/fisiologia , Memória Episódica , Rememoração Mental/fisiologia , Volição/fisiologia , Navegação Espacial
4.
Front Artif Intell ; 6: 1116870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925616

RESUMO

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

5.
Elife ; 112022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355598

RESUMO

A wide range of techniques in neuroscience involve placing individual probes at precise locations in the brain. However, large-scale measurement and manipulation of the brain using such methods have been severely limited by the inability to miniaturize systems for probe positioning. Here, we present a fundamentally new, remote-controlled micropositioning approach composed of novel phase-change material-filled resistive heater micro-grippers arranged in an inchworm motor configuration. The microscopic dimensions, stability, gentle gripping action, individual electronic control, and high packing density of the grippers allow micrometer-precision independent positioning of many arbitrarily shaped probes using a single piezo actuator. This multi-probe single-actuator design significantly reduces the size and weight and allows for potential automation of microdrives. We demonstrate accurate placement of multiple electrodes into the rat hippocampus in vivo in acute and chronic preparations. Our robotic microdrive technology should therefore enable the scaling up of many types of multi-probe applications in neuroscience and other fields.


Assuntos
Neurônios , Procedimentos Cirúrgicos Robóticos , Animais , Ratos , Eletrofisiologia/métodos , Eletrodos Implantados , Encéfalo
6.
Nat Commun ; 12(1): 5245, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475396

RESUMO

State-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy.


Assuntos
Eletrodos Implantados , Eletrofisiologia/métodos , Espaço Extracelular/fisiologia , Silício/química , Potenciais de Ação , Animais , Encéfalo/fisiologia , Eletrofisiologia/instrumentação , Desenho de Equipamento , Camundongos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador
7.
Science ; 372(6539)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859006

RESUMO

Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Eletrofisiologia/instrumentação , Microeletrodos , Neurônios/fisiologia , Potenciais de Ação , Algoritmos , Animais , Eletrofisiologia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miniaturização , Ratos
8.
IEEE Trans Biomed Circuits Syst ; 13(6): 1635-1644, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545742

RESUMO

Although CMOS fabrication has enabled a quick evolution in the design of high-density neural probes and neural-recording chips, the scaling and miniaturization of the complete data-acquisition systems has happened at a slower pace. This is mainly due to the complexity and the many requirements that change depending on the specific experimental settings. In essence, the fundamental challenge of a neural-recording system is getting the signals describing the largest possible set of neurons out of the brain and down to data storage for analysis. This requires a complete system optimization that considers the physical, electrical, thermal and signal-processing requirements, while accounting for available technology, manufacturing constraints and budget. Here we present a scalable and open-standards-based open-source data-acquisition system capable of recording from over 10,000 channels of raw neural data simultaneously. The components and their interfaces have been optimized to ensure robustness and minimum invasiveness in small-rodent electrophysiology.


Assuntos
Encéfalo/fisiologia , Processamento de Sinais Assistido por Computador/instrumentação , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Desenho de Equipamento , Camundongos , Semicondutores
9.
Neuron ; 103(6): 1005-1015, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31495645

RESUMO

The classic approach to measure the spiking response of neurons involves the use of metal electrodes to record extracellular potentials. Starting over 60 years ago with a single recording site, this technology now extends to ever larger numbers and densities of sites. We argue, based on the mechanical and electrical properties of existing materials, estimates of signal-to-noise ratios, assumptions regarding extracellular space in the brain, and estimates of heat generation by the electronic interface, that it should be possible to fabricate rigid electrodes to concurrently record from essentially every neuron in the cortical mantle. This will involve fabrication with existing yet nontraditional materials and procedures. We further emphasize the need to advance materials for improved flexible electrodes as an essential advance to record from neurons in brainstem and spinal cord in moving animals.


Assuntos
Potenciais de Ação/fisiologia , Eletrocorticografia/métodos , Eletrodos , Neocórtex/fisiologia , Neurônios/fisiologia , Animais , Eletrocorticografia/instrumentação , Desenho de Equipamento , Espaço Extracelular , Mamíferos , Neocórtex/citologia , Razão Sinal-Ruído , Análise de Célula Única
10.
Nat Biomed Eng ; 3(9): 741-753, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30936430

RESUMO

Electrophysiology is the most used approach for the collection of functional data in basic and translational neuroscience, but it is typically limited to either intracellular or extracellular recordings. The integration of multiple physiological modalities for the routine acquisition of multimodal data with microelectrodes could be useful for biomedical applications, yet this has been challenging owing to incompatibilities of fabrication methods. Here, we present a suite of glass pipettes with integrated microelectrodes for the simultaneous acquisition of multimodal intracellular and extracellular information in vivo, electrochemistry assessments, and optogenetic perturbations of neural activity. We used the integrated devices to acquire multimodal signals from the CA1 region of the hippocampus in mice and rats, and show that these data can serve as ground-truth validation for the performance of spike-sorting algorithms. The microdevices are applicable for basic and translational neurobiology, and for the development of next-generation brain-machine interfaces.


Assuntos
Encéfalo/fisiologia , Eletrofisiologia/métodos , Microeletrodos , Técnicas de Patch-Clamp/métodos , Algoritmos , Animais , Região CA1 Hipocampal , Eletroquímica , Eletrofisiologia/instrumentação , Vidro , Masculino , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp/instrumentação , Ratos
11.
Nat Nanotechnol ; 13(4): 278-288, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29636589

RESUMO

Success in the projects aimed at providing an advanced understanding of the brain is directly predicated on making critical advances in nanotechnology. This Perspective addresses the unique interface of neuroscience and nanomaterials by considering the foundational problem of sensing neuron membrane voltage and offers a potential solution that may be facilitated by a prototypical nanomaterial. Despite substantial improvements, the visualization of instantaneous voltage changes within individual neurons, whether in cell culture or in vivo, at both the single-cell and network level at high speed remains complex and problematic. The unique properties of semiconductor quantum dots (QDs) have made them powerful fluorophores for bioimaging. What is not widely appreciated, however, is that QD photoluminescence is exquisitely sensitive to proximal electric fields. This property should be suitable for sensing voltage changes that occur in the active neuronal membrane. Here, we examine the potential role of QDs in addressing the important challenge of real-time optical voltage imaging.


Assuntos
Corantes Fluorescentes/análise , Neurônios/metabolismo , Imagem Óptica/métodos , Pontos Quânticos/análise , Animais , Sinalização do Cálcio , Eletricidade , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Luminescência , Potenciais da Membrana , Neurônios/citologia
12.
Nature ; 551(7679): 232-236, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120427

RESUMO

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal-oxide-semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-µm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.


Assuntos
Eletrodos , Neurônios/fisiologia , Silício/metabolismo , Animais , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Feminino , Masculino , Camundongos , Movimento/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Ratos , Semicondutores , Vigília/fisiologia
13.
J Neurophysiol ; 111(5): 1132-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24353300

RESUMO

Monitoring representative fractions of neurons from multiple brain circuits in behaving animals is necessary for understanding neuronal computation. Here, we describe a system that allows high-channel-count recordings from a small volume of neuronal tissue using a lightweight signal multiplexing headstage that permits free behavior of small rodents. The system integrates multishank, high-density recording silicon probes, ultraflexible interconnects, and a miniaturized microdrive. These improvements allowed for simultaneous recordings of local field potentials and unit activity from hundreds of sites without confining free movements of the animal. The advantages of large-scale recordings are illustrated by determining the electroanatomic boundaries of layers and regions in the hippocampus and neocortex and constructing a circuit diagram of functional connections among neurons in real anatomic space. These methods will allow the investigation of circuit operations and behavior-dependent interregional interactions for testing hypotheses of neural networks and brain function.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Eletrodos Implantados , Rede Nervosa/fisiologia , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador , Animais , Córtex Cerebral/cirurgia , Masculino , Camundongos , Rede Nervosa/cirurgia , Ratos , Ratos Long-Evans , Software
14.
Front Neural Circuits ; 7: 177, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24273494

RESUMO

The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 × 0.83 × 0.21 mm(3) volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 µm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.


Assuntos
Córtex Cerebral/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Tomografia/métodos , Animais , Dendritos/fisiologia , Camundongos , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Vias Neurais/fisiologia
15.
Biophys J ; 102(4): 934-44, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22385865

RESUMO

Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced--resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation.


Assuntos
Fótons , Espectrometria de Fluorescência/métodos , Absorção , Cálcio/química , Corantes Fluorescentes/química , Rodaminas/química
16.
Science ; 320(5872): 106-9, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18388294

RESUMO

The full promise of human genomics will be realized only when the genomes of thousands of individuals can be sequenced for comparative analysis. A reference sequence enables the use of short read length. We report an amplification-free method for determining the nucleotide sequence of more than 280,000 individual DNA molecules simultaneously. A DNA polymerase adds labeled nucleotides to surface-immobilized primer-template duplexes in stepwise fashion, and the asynchronous growth of individual DNA molecules was monitored by fluorescence imaging. Read lengths of >25 bases and equivalent phred software program quality scores approaching 30 were achieved. We used this method to sequence the M13 virus to an average depth of >150x and with 100% coverage; thus, we resequenced the M13 genome with high-sensitivity mutation detection. This demonstrates a strategy for high-throughput low-cost resequencing.


Assuntos
Bacteriófago M13/genética , DNA Viral/genética , Genoma Viral , Análise de Sequência de DNA/métodos , Algoritmos , Biologia Computacional/métodos , Primers do DNA , DNA Viral/química , Mutação , Alinhamento de Sequência , Software , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...