Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 6(13): 2338-49, 2000 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-10939736

RESUMO

A homologous series of bis-diphenylphosphine oxides (C6H5)2PO(CH2)(n)PO(C6H5)2 (with n = 2-8; denoted 2-8] have been investigated to explore the effects of a range of competing and cooperative intermolecular and intramolecular interactions on the structural properties in the solid state. The important factors influencing the structural properties include intramolecular aspects such as the conformation of the aliphatic chain and the intramolecular interaction between the two P=O dipoles in the molecule, and intermolecular aspects such as long-range electrostatic interactions (dominated by the arrangement of the P=O dipoles), C-H...O interactions, C-H...pi interactions and pi...pi interactions. Compounds 3 and 5 could be crystallized only as solvate co-crystals (3 water and 5 x (toluene)2], whereas the crystal structures of all the other compounds contain only the bis-diphenylphosphine oxide molecule. The crystal structures have been determined from single-crystal X-ray diffraction data, with the exception of 7 (which has been determined here from powder X-ray diffraction data) and 4 (which was known previously). The compounds with even n represent a systematic structural series, exhibiting characteristic, essentially linear P=O...P=O...P=O dipolar arrays, together with C-H...O and C-H...pi interactions. For the compounds with odd n, on the other hand, uniform structural behaviour is not observed across the series, although certain aspects of these crystal structures contribute in a general sense to our understanding of the structural properties of bis-diphenylphosphine oxides. Importantly, for the compounds with odd n, there is "frustration" with regard to the molecular conformation, as the preferred all-anti conformation of the aliphatic chain gives rise to an unfavourable parallel alignment of the two P=O dipoles within the molecule. Clearly the importance of avoiding a parallel alignment of the P=O dipoles becomes greater as n decreases. Local structural aspects (investigated by high-resolution solid-state 31P NMR spectroscopy) and thermal properties of the bis-diphenylphosphine oxide materials are also reported.

2.
Org Lett ; 2(10): 1365-8, 2000 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-10814448

RESUMO

The rational design of a bis(phosphine oxide) host which is capable of binding a benzylic amine is presented. The ability of this host to increase the rate of addition of 4-fluorobenzylamine to N-phenylmaleimide is rationalized in terms of the enhancement of the nucleophilicity of the benzylic amine.

3.
Chemistry ; 6(7): 1120-6, 2000 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-10785796

RESUMO

The thermally induced solidstate polymerization reactions in sodium chloroacetate and sodium bromoacetate, leading to poly(hydroxyacetic acid) (polyglycolide) and NaCl and NaBr, respectively, were studied by isothermal in situ solid-state NMR spectroscopy at 120, 130 and 140 degrees C with a time resolution of the order of 5 to 25 min. The nuclei probed were 23Na and 13C, allowing the parent compounds (sodium halogenoacetates) and both reaction products (polymer and alkali halide) to be monitored. For sodium chloroacetate, there is no evidence for the involvement of intermediate phases during the reaction whereas this cannot be excluded for sodium bromoacetate. The crystal structure of sodium bromoacetate was determined directly from powder diffraction data by the Monte Carlo method, and was found to be isostructural with sodium chloroacetate. The topochemical reaction mechanism proposed previously for sodium chloroacetate is thus also applicable for the polymerization reaction in sodium bromoacetate. The mechanistic and kinetic information obtained from our in situ solid-state NMR investigations is compared and contrasted with information obtained from other in situ probes of the polymerization reactions in these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA