Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 50(3): 255-63, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712365

RESUMO

ABSTRACT The establishment and growth of trees can be compromised by soil contamination which can reduce populations of key microbial symbionts. We describe the colonisation of grey alder (Alnus incana) by Frankia from 10 urban soils with varying degrees of organic and inorganic pollution. Principal components analysis (PCA) of soil chemical profiles showed a separation of remediated and unremediated soils. A. incana seedlings were used as trap plants to capture the microsymbiont from soil. After 6 months growth, nodulation was lowest on trees grown with the most contaminated soils. Plant biomass was positively correlated with root nodule biomass and negatively correlated with PAH concentration. DNA was isolated from nodules for the analysis of Frankia genetic diversity. The polymerase chain reaction (PCR) was used to amplify the 16S-23S intergenic spacer (IGS) of Frankia ribosomal DNA. PCR products were subject to restriction digestion yielding 10 restriction fragment length polymorphism (RFLP) types from 72 nodules analysed. Our results demonstrate that each soil supports a distinct nodulating Frankia community. Partial 16S sequencing placed most strains in Frankia clusters 1a and 1b, which are typically Alnus-infecting, but sequences from several nodules obtained from a gasworks soil belonged to cluster 3, normally associated with Elaeagnus. These results show for the first time that polluted soils can be an effective source of Alnus-infective Frankia. Inoculation with site-adapted Frankia under greenhouse conditions could thus be an appropriate strategy to increase the symbiotic capacity of A. incana and to improve its chances of survival and growth when planted on polluted soils.


Assuntos
Alnus/microbiologia , Frankia/classificação , Frankia/genética , Variação Genética , Raízes de Plantas/microbiologia , Solo/análise , Alnus/efeitos dos fármacos , Alnus/crescimento & desenvolvimento , Biomassa , Análise por Conglomerados , Impressões Digitais de DNA/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Compostos Inorgânicos/análise , Dados de Sequência Molecular , Compostos Orgânicos/análise , Filogenia , Nodulação/efeitos dos fármacos , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo/análise
2.
Environ Pollut ; 109(1): 109-18, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15092918

RESUMO

Lysimeters located outdoors have been used to evaluate the decomposition of buried oily beach sand waste (OBS) prepared using Forties light crude oil and sand from different locations around the British coast. The OBS (5% oil by weight) was buried as a 12-cm layer over dune pasture sub-sand and overlain by 20 cm of dune pasture topsoil. Decomposition rates of oil residues averaged 2300 kg ha(-1) in the first year and the pattern of oil decomposition may be represented by a power curve. Oil decomposition was strongly related to the temperature in the OBS layer, but was also significantly affected by rainfall in the previous 12 h. The CO(2) flux at the surface of the treatment lysimeters followed the relationship [log(10) CO(2) (mg C m(-2) h(-1))=0.93+0.058x OBS temp. (degrees C)-0.042x12 h rain (mm)]. There was considerable variation in the rate of oil decomposition in sands collected from different sites. Sand from Askernish supported most microbial activity whilst sand from Tain was relatively inactive. The decomposition process appeared to cease when the sand became saturated with water, i.e. temporarily anaerobic. However, decomposition recommenced when the soil dried out. The fastest rate of decomposition occurred in sand from one of the two sites predicted to have high populations of hydrocarbon-degrading bacteria. Larger particle size and higher Ca content may also be significant factors governing the rate of decomposition.

3.
New Phytol ; 130(4): 565-574, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33874484

RESUMO

Responses to elevated CO2 have been studied using Agrostis capillaris L., an upland grass which is abundant on nutrient-poor soils. Plants were grown in sand culture with a wide range of nitrogen, phosphorus and potassium concentrations, and the impact of CO2 on the demand for nutrients was determined using isotopic root bioassays. Plants grown with the smallest concentrations of N and P showed typical foliar symptoms associated with deficiency of these elements. However, even when supplies of N and P were limiting to growth, additional CO2 (250 ppm above ambient) influenced neither total N nor total P in above-ground tissues, nor nutrient demands as indicated by the bioassay. The estimates of the demand of the plants for K from the 86 Rb bioassay indicated an appreciable increase when plants were raised in elevated CO2 . For plants of the same size with the same nutrient supply, those grown in elevated CO2 consistently displayed an increased internal demand for K. Uptake of K was not however, enhanced by elevated CO2 even in non-limiting conditions and it might therefore be limited by a factor other than K supply. The overall conclusion from the experiments is that when A. capillaris is grown in elevated CO2 , uptake of N, P and K fails to increase proportionally with dry mass. This was true even when nutrient supplies were adequate, and it appears that nutrient-use-efficiency might increase to enable the plants to maintain growth in elevated CO2 .

4.
Environ Pollut ; 75(2): 229-36, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-15092038

RESUMO

Radioactive sulphate (35SO4) was applied to the soil below a Scots pine forest on 23 June 1989, and its movement into the canopy and into throughfall and stemflow was measured over 4 months. The specific activity, Bq (mg S)(-1), of the canopy increased monotonically; uptake by current-year (1989) expanding needles was initially twice as fast as by older needles or live twigs. By 10 October the canopy average specific activity was 62 Bq (mg S)(-1). The specific activity of net throughfall (throughfall + stemflow - rain), deduced from measurements from six throughfall collectors, six stemflow collectors and two rain collectors, fell rapidly from 12.6 Bq (mg S)(-1) in late July to <1 Bq (mg S)(-1) in mid-August. The results suggest (assuming rapid equilibration of 35S with sulphate in soil) that root-derived sulphate contributed c. 3% of sulphate in net throughfall and that dry deposition of SO2 and sulphate particles contributed c. 97% of the 0.56 g S m(-2) measured in net throughfall over the period. Simultaneous measurements of SO2 at canopy height and of NH3 above and within the canopy gave mean concentrations of 5.9 and 0.86 microg m(-3), respectively, sufficient to account for the sulphate measured in net throughfall only if codeposition of NH3 and SO2 occurred to canopy surfaces. The large values of specific activity observed in July, however, indicate that throughfall composition may be closely related to recent soil input of sulphate, and that equilibrium cannot be safely assumed. The possibility of a significant contribution of soil-derived sulphate to sulphate deposition in net throughfall cannot be ruled out on the basis of this experiment.

5.
Environ Pollut ; 51(1): 31-47, 1988.
Artigo em Inglês | MEDLINE | ID: mdl-15092637

RESUMO

The distribution of the elements Cd, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn has been examined in the horizons of soils under aged Sitka spruce (Picea sitchensis (Bong.) Carr.) stands at a plantation in Northern England. The stands are under first-generation cultivation and are up to 33 years old. Cadmium, Mn, Pb and Zn concentrations were consistently higher in the organic layers than in the underlying mineral soil. This contrasted with the situation for Sr and V. Cadmium, Pb and Zn all showed an increase in concentration in the L + F horizons with stand age and a corresponding increase in the difference between L + F horizon concentrations. Soil pH declined with increasing stand age. Cadmium, Cr, Pb and Zn were all present at higher concentrations in the F horizon than in any other, while Cu and Ni were relatively constant through all the horizons studied. For all nine elements, the H horizon was the largest store of the three organic layers. Calculated rates of accumulation of Cd, Pb and Zn in the L + F horizons gave good agreement with estimated regional atmospheric deposition rates. In comparison to atmospheric deposition, biological mobilisation and deposition of Cd, Pb and Zn make a relatively minor contribution to the surface soil metal burden. Cadmium appeared to be the most readily leached of these three metals from the forest floor, although some transfer of atmospherically-derived Pb to the H+ soil horizons was indicated.

6.
New Phytol ; 101(1): 133-151, 1985 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873819

RESUMO

Mycorrhizal infection of two-year-old seedlings of Betula pendula Roth, and Acer pseudoplatanus L. was examined in a pot experiment, in relation to several soil variables (pH, organic matter, N, P, K, Ca, Fe, and phosphatase activity), host uptake of 32 P, and plant performance (height and weight), in 25 Cumbrian soils from natural and semi-natural habitats (such as woodland, carr and upland heath). Soils were used in a fresh state to maintain indigenous mycofloras and seedlings were raised from several seed-lots to include possible ecotypic variation. Infection (incidence and intensity) of both 'immature' and 'mature' mycorrhizas was estimated. Most plants were mycorrhizal, ectomycorrhizas occuring on Betula and vesicular-arbuscular (VA) endophytes in Acer. Differences in the degree of infection between soils, but not between seed-lots, were highly significant. Infection of one or both species was highly correlated with several soil factors (pH, organic matter, phosphorus and iron), and with all the plant variables. In Betula, evidence for most of these relationships was obtained only from 'immature' mycorrhizas, suggesting early physiological activity. Mycorrhizas accounted for a small but significant proportion of the variation in growth of both hosts, and soil properties accounted for a high proportion of the variation in both the plant growth and mycorrhizal infection, as shown by multiple regression analyses. Growth of Acer appeared to have a greater influence than soil factors on the variation in VA infection. 'Beading' of Acer roots was negatively correlated with plant weight and soil phosphorus, suggesting a morphological response to P- deficiency. Possible causal relationships between hosts, fungal symbionts and soils are discussed.

8.
Ciba Found Symp ; (57): 175-99, 1977.
Artigo em Inglês | MEDLINE | ID: mdl-357119

RESUMO

The distribution of phosphorus capital and net annual transfers of phosphorus between the major components of two unfertilized phosphorus-deficient UK ecosystems, an oak--ash woodland in the Lake District and an Agrostis-Festuca grassland in Snowdonia (both on acid brown-earth soils), have been estimted in terms of kg P ha--1. In both ecosystems less than 3% of the phosphorus, totalling 1890 kg P ha--1 and 3040 kg P ha--1 for the woodland and grassland, respectively, is contained in the living biomass and half that is below ground level. Nearly all the phosphorus is in the soil matrix. Although the biomass phosphorus is mostly in the vegetation, the soil fauna and vegetation is slower (25%) than in the grassland vegetatation (208%). More than 85% of the net annual vegetation uptake of phosphorus from the soil is returned to the soil, mainly in organic debris, which in the grassland ecosystem is more than twice as rich in phosphorus (0.125% P) as in the woodland ecosystem (0.053% P). These concentrations are related to the rates of turnover (input/P content) of phosphorus in the litter layer on the soil surface; it is faster in the grassland (460%) than in the woodland (144%). In both cycles plant uptake of phosphorus largely depends on the release of phosphorus through decomposition of the organic matter returned to soil. In both the woodland and the grassland, the amount of cycling phosphorus is potentially reduced by its immobilization in tree and sheep production and in undecomposed organic matter accumulating in soil. It is assumed that the reductions are counterbalanced by the replenishment of cycling phosphorus by (i) some mineralization of organically bound phosphorus in the mineral soil, (ii) the income in rainfall and aerosols not being effectively lost in soil drainage waters and (iii) rock weathering. The effects of the growth of conifers and sheep grazing on the balance between decomposition and accumulation of organic matter returned to soil are considered in relation to the rate of phosphorus cycling and the pedogenetic changes in soil phosphorus condition leading to reduced fertility. Although controlled sheep grazing speeds up phosphorus cycling and may reverse the pedogenetic trend in favour of soil improvement, conifers may slow down phosphorus cycling and promote the pedogenetic trend towards infertility.


Assuntos
Ecologia , Fósforo/metabolismo , Poaceae/metabolismo , Árvores/metabolismo , Agricultura , Animais , Ovinos , Solo , Microbiologia do Solo , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...