Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
JCI Insight ; 52019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31343988

RESUMO

Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-ß binding protein-1 (LTBP1) to induce TGF-ß activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-ß-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Fibrose Pulmonar Idiopática/patologia , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Animais , Bleomicina/toxicidade , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/cirurgia , Pulmão/citologia , Pulmão/patologia , Transplante de Pulmão , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Cultura Primária de Células , Isoformas de Proteínas/metabolismo , Adulto Jovem
2.
Eur Respir Rev ; 26(146)2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29070578

RESUMO

Chronic obstructive pulmonary disease (COPD) patients are at increased risk of developing nonsmall cell lung carcinoma, irrespective of their smoking history. Although the mechanisms behind this observation are not clear, established drivers of carcinogenesis in COPD include oxidative stress and sustained chronic inflammation. Mitochondria are critical in these two processes and recent evidence links increased oxidative stress in COPD patients to mitochondrial damage. We therefore postulate that mitochondrial damage in COPD patients leads to increased oxidative stress and chronic inflammation, thereby increasing the risk of carcinogenesis.The functional state of the mitochondrion is dependent on the balance between its biogenesis and degradation (mitophagy). Dysfunctional mitochondria are a source of oxidative stress and inflammasome activation. In COPD, there is impaired translocation of the ubiquitin-related degradation molecule Parkin following activation of the Pink1 mitophagy pathway, resulting in excessive dysfunctional mitochondria. We hypothesise that deranged pathways in mitochondrial biogenesis and mitophagy in COPD can account for the increased risk in carcinogenesis. To test this hypothesis, animal models exposed to cigarette smoke and developing emphysema and lung cancer should be developed. In the future, the use of mitochondria-based antioxidants should be studied as an adjunct with the aim of reducing the risk of COPD-associated cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/patologia , Dinâmica Mitocondrial , Mitofagia , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fatores de Risco , Transdução de Sinais , Fumar/efeitos adversos , Fumar/epidemiologia
3.
Respirology ; 22(1): 21-32, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27731525

RESUMO

COPD is a major cause of global mortality and morbidity but current treatments are poorly effective. This is because the underlying mechanisms that drive the development and progression of COPD are incompletely understood. Animal models of disease provide a valuable, ethically and economically viable experimental platform to examine these mechanisms and identify biomarkers that may be therapeutic targets that would facilitate the development of improved standard of care. Here, we review the different established animal models of COPD and the various aspects of disease pathophysiology that have been successfully recapitulated in these models including chronic lung inflammation, airway remodelling, emphysema and impaired lung function. Furthermore, some of the mechanistic features, and thus biomarkers and therapeutic targets of COPD identified in animal models are outlined. Some of the existing therapies that suppress some disease symptoms that were identified in animal models and are progressing towards therapeutic development have been outlined. Further studies of representative animal models of human COPD have the strong potential to identify new and effective therapeutic approaches for COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Remodelação das Vias Aéreas , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia
4.
Oncotarget ; 7(30): 47465-47478, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27329844

RESUMO

Constitutive activation of the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3), via co-expression of its ligand or by genetic mutation, is common in acute myeloid leukemia (AML). In this study we show that FLT3 activation inhibits the activity of the tumor suppressor, protein phosphatase 2A (PP2A). Using BaF3 cells transduced with wildtype or mutant FLT3, we show that FLT3-induced PP2A inhibition sensitizes cells to the pharmacological PP2A activators, FTY720 and AAL(S). FTY720 and AAL(S) induced cell death and inhibited colony formation of FLT3 activated cells. Furthermore, PP2A activators reduced the phosphorylation of ERK and AKT, downstream targets shared by both FLT3 and PP2A, in FLT3/ITD+ BaF3 and MV4-11 cell lines. PP2A activity was lower in primary human bone marrow derived AML blasts compared to normal bone marrow, with blasts from FLT3-ITD patients displaying lower PP2A activity than WT-FLT3 blasts. Reduced PP2A activity was associated with hyperphosphorylation of the PP2A catalytic subunit, and reduced expression of PP2A structural and regulatory subunits. AML patient blasts were also sensitive to cell death induced by FTY720 and AAL(S), but these compounds had minimal effect on normal CD34+ bone marrow derived monocytes. Finally, PP2A activating compounds displayed synergistic effects when used in combination with tyrosine kinase inhibitors in FLT3-ITD+ cells. A combination of Sorafenib and FTY720 was also synergistic in the presence of a protective stromal microenvironment. Thus combining a PP2A activating compound and a FLT3 inhibitor may be a novel therapeutic approach for treating AML.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/fisiologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Cloridrato de Fingolimode/farmacologia , Humanos , Leucemia Mieloide Aguda/enzimologia , Camundongos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Sorafenibe , Tirosina Quinase 3 Semelhante a fms/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...