Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eng Life Sci ; 23(9): e2300009, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664009

RESUMO

Recently, multimodal chromatography using restricted access media (RAM) for the purification of nanoparticles, such as viruses has regained increasing attention. These chromatography resins combine size exclusion on the particle shell and adsorptive interaction within the core. Accordingly, smaller process-related impurities, for example, DNA and proteins, can be retained, while larger product viruses can pass unhindered. We evaluated a range of currently available RAM, differing in the shells' pore cut-off and the core chemistry, for the purification of a cell culture-derived clarified model virus, namely the Orf virus (ORFV). We examined impurity depletion and product recovery as relevant criteria for the evaluation of column performance, as well as scale-up robustness and regeneration potential for evaluating a multiple use application. The results indicate that some columns, for example, the Capto Core, enable both a high DNA and protein removal, while others, for example, the Monomix Core 60 (MC60), are more suitable for DNA depletion. Furthermore, column regeneration is facilitated by using columns with larger shell pores (5000 vs. 700 kDa) and weaker binding interactions (anion exchange vs. multimodal). According to these findings, the choice of RAM resins should be selected according to the respective feed sample composition and the planned number of application cycles.

2.
Virus Res ; 336: 199213, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657509

RESUMO

The Orf virus (ORFV) is a promising candidate for vector vaccines as well as for immunomodulatory and oncolytic therapies. However, few publications are available on its infectivity degradation or on suitable additives for prolonging its viral stability. In this study, the non-supplemented ORFV itself showed a very high stability at storage temperatures up to 28 °C, with a linear titer loss of 0.10 log infectious particles per day at 4 °C over a period of five weeks. To prolong this inherent stability, thirty additives, i.e., detergents, sugars, proteins, salts, and buffers as well as amino acids, were tested for their time- and temperature-dependent influence on the ORFV infectivity. A stabilizing effect on the infectivity was identified for the addition of all tested proteins, i.e., gelatine, bovine serum albumin, and recombinant human serum albumin (rHSA), of several sugars, i.e., mannitol, galactose, sucrose, and trehalose, of amino acids, i.e., arginine and proline, of the detergent Pluronic F68, and of the salt Na2SO4. The infectivity preservation was especially pronounced for proteins in liquid and frozen formulations, sugars in frozen state, and arginine und Pluronic in liquid formulations at high storage temperatures (37 °C). The addition of 1% rHSA with and without 5% sucrose was evaluated as a very stable formulation with a high safety profile and economic validity at storage temperatures up to 28 °C. At increased temperatures, the supplementation with 200 mM arginine performed better than with rHSA. In summary, this comprehensive data provides different options for a stable ORFV formulation, considering temperature, storage time, economic aspects, and downstream processing integrity.


Assuntos
Excipientes , Proteínas , Humanos , Excipientes/química , Liofilização , Sacarose/química , Açúcares , Aminoácidos , Arginina/química
3.
Vaccine ; 41(32): 4731-4742, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37353451

RESUMO

A promising new vaccine platform is based on the Orf virus, a viral vector of the genus Parapoxvirus, which is currently being tested in phase I clinical trials. The application as a vaccine platform mandates a well-characterised, robust, and efficient production process. To identify critical process parameters in the production process affecting the virus' infectivity, the Orf virus was subjected to forced degradation studies, including thermal, pH, chemical, and mechanical stress conditions. The tests indicated a robust virus infectivity within a pH range of 5-7.4 and in the presence of the tested buffering substances (TRIS, HEPES, PBS). The ionic strength up to 0.5 M had no influence on the Orf virus' infectivity stability for NaCl and MgCl2, while NH4Cl destabilized significantly. Furthermore, short-term thermal stress of 2d up to 37 °C and repeated freeze-thaw cycles (20cycles) did not affect the virus' infectivity. The addition of recombinant human serum albumin was found to reduce virus inactivation. Last, the Orf virus showed a low shear sensitivity induced by peristaltic pumps and mixing, but was sensitive to ultrasonication. The isoelectric point of the applied Orf virus genotype D1707-V was determined at pH3.5. The broad picture of the Orf virus' infectivity stability against environmental parameters is an important contribution for the identification of critical process parameters for the production process, and supports the development of a stable pharmaceutical formulation. The work is specifically relevant for enveloped (large DNA) viruses, like the Orf virus and like most vectored vaccine approaches.


Assuntos
Vírus do Orf , Humanos , Vírus do Orf/genética , Congelamento , Vetores Genéticos , Preparações Farmacêuticas
4.
J Fish Dis ; 46(8): 873-886, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227769

RESUMO

Koi herpesvirus (KHV) is the causative agent of a koi herpesvirus disease (KHVD) inducing high mortality rates in common carp and koi (Cyprinus carpio). No widespread effective vaccination strategy has been implemented yet, which is partly due to side effects of the immunized fish. In this study, we present an evaluation of the purification of infectious KHV from host cell protein and DNA, using the steric exclusion chromatography. The method is related to conventional polyethylene glycol (PEG) precipitation implemented in a chromatographic set-up and has been applied for infectious virus particle purification with high recoveries and impurity removal. Here, we achieved a yield of up to 55% of infectious KHV by using 12% PEG (molecular weight of 6 kDa) at pH 7.0. The recoveries were higher when using chromatographic cellulose membranes with 3-5 µm pores in diameter instead of 1 µm. The losses were assumed to originate from dense KHV precipitates retained on the membranes. Additionally, the use of >0.6 M NaCl was shown to inactivate infectious KHV. In summary, we propose a first step towards a purification procedure for infectious KHV with a possible implementation in fish vaccine manufacturing.


Assuntos
Carpas , Doenças Transmissíveis , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Doenças dos Peixes/prevenção & controle , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Cromatografia em Gel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...