Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biomed Imaging ; 2(7): 490-500, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39056064

RESUMO

Lung cancer, the most common cause of cancer-related death in the United States, requires advanced intraoperative detection methods to improve evaluation of surgical margins. In this study we employed DDAO-arachidonate (DDAO-A), a phospholipase A2 (PLA2) activatable fluorophore, designed for the specific optical identification of lung cancers in real-time during surgery. The in vitro fluorescence activation of DDAO-A by porcine sPLA2 was tested in various liposomal formulations, with 100 nm extruded EggPC showing the best overall characteristics. Extruded EggPC liposomes containing DDAO-A were tested for their stability under various storage conditions, demonstrating excellent stability for up to 4 weeks when stored at -20 °C or below. Cell studies using KLN 205 and LLC1 lung cancer cell lines showed DDAO-A activation was proportional to cell number. DDAO-A showed preferential activation by human recombinant cPLA2, an isoform highly specific to arachidonic acid-containing lipids, when compared to a control probe, DDAO palmitate (DDAO-P). In vivo studies with DBA/2 mice bearing KLN 205 lung tumors recapitulated these results, with preferential activation of DDAO-A relative to DDAO-P following intratumoral injection. Topical application of DDAO-A-containing liposomes to human (n = 10) and canine (n = 3) lung cancers ex vivo demonstrated the preferential activation of DDAO-A in tumor tissue relative to adjacent normal lung tissue, with fluorescent tumor-to-normal ratios (TNR) of up to 5.2:1. The combined results highlight DDAO-A as a promising candidate for clinical applications, showcasing its potential utility in intraoperative and back-table imaging and topical administration during lung cancer surgeries. By addressing the challenge of residual microscopic disease at resection margins and offering stability in liposomal formulations, DDAO-A emerges as a potentially valuable tool for advancing precision lung cancer surgery and improving curative resection rates.

2.
Bioconjug Chem ; 32(8): 1852-1863, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34139845

RESUMO

New exogenous probes are needed for both imaging diagnostics and therapeutics. Here, we introduce a novel nanocomposite near-infrared (NIR) fluorescent imaging probe and test its potency as a photosensitizing agent for photodynamic therapy (PDT) against triple-negative breast cancer cells. The active component in the nanocomposite is a small molecule, pyropheophorbide a-phosphatidylethanolamine-QSY21 (Pyro-PtdEtn-QSY), which is imbedded into lipid nanoparticles for transport in the body. The probe targets abnormal choline metabolism in cancer cells; specifically, the overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) in breast, prostate, and ovarian cancers. Pyro-PtdEtn-QSY consists of a NIR fluorophore and a quencher, attached to a PtdEtn moiety. It is selectively activated by PC-PLC resulting in enhanced fluorescence in cancer cells compared to normal cells. In our in vitro investigation, four breast cancer cell lines showed higher probe activation levels than noncancerous control cells, immortalized human mammary gland cells, and normal human T cells. Moreover, the ability of this nanocomposite to function as a sensitizer in PDT experiments on MDA-MB-231 cells suggests that the probe is promising as a theranostic agent.


Assuntos
Fosfolipídeos/farmacologia , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Lipídeos/química , Lipídeos/farmacologia , Estrutura Molecular , Nanopartículas/química , Fosfolipídeos/química , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA