Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 23(4): 932-942, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28461699

RESUMO

Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray matter thickness and surface area measures from brain magnetic resonance imaging scans of 6503 individuals including 1837 unrelated adults with BD and 2582 unrelated healthy controls for group differences while also examining the effects of commonly prescribed medications, age of illness onset, history of psychosis, mood state, age and sex differences on cortical regions. In BD, cortical gray matter was thinner in frontal, temporal and parietal regions of both brain hemispheres. BD had the strongest effects on left pars opercularis (Cohen's d=-0.293; P=1.71 × 10-21), left fusiform gyrus (d=-0.288; P=8.25 × 10-21) and left rostral middle frontal cortex (d=-0.276; P=2.99 × 10-19). Longer duration of illness (after accounting for age at the time of scanning) was associated with reduced cortical thickness in frontal, medial parietal and occipital regions. We found that several commonly prescribed medications, including lithium, antiepileptic and antipsychotic treatment showed significant associations with cortical thickness and surface area, even after accounting for patients who received multiple medications. We found evidence of reduced cortical surface area associated with a history of psychosis but no associations with mood state at the time of scanning. Our analysis revealed previously undetected associations and provides an extensive analysis of potential confounding variables in neuroimaging studies of BD.


Assuntos
Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/patologia , Substância Cinzenta/patologia , Adolescente , Adulto , Fatores Etários , Transtorno Bipolar/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Córtex Cerebral/fisiopatologia , Feminino , Lobo Frontal/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Córtex Pré-Frontal/patologia , Transtornos Psicóticos/patologia , Fatores Sexuais , Lobo Temporal/patologia , Adulto Jovem
2.
Acta Psychiatr Scand ; 135(2): 117-126, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27925164

RESUMO

OBJECTIVE: The effect of antipsychotic medication on brain structure remains unclear. Given the prevalence of weight gain as a side-effect, body mass index (BMI) change could be a confounder. METHOD: Patients with first-episode psychosis (n = 78) and healthy controls (n = 119) underwent two 1.5T MRI scans with a 1-year follow-up interval. siena (fsl 5.0) was used to measure whole-brain volume change. Weight and height were measured at both time points. Antipsychotic medication use at baseline and follow-up was converted into chlorpromazine equivalent dose and averaged. RESULTS: Patients did not show significantly larger brain volume loss compared with healthy controls. In the whole sample (n = 197), BMI change was negatively associated with brain volume change (ß = -0.19, P = 0.008); there was no interaction effect of group. Among patients, higher antipsychotic medication dosage was associated with greater brain volume loss (ß = -0.45, P < 0.001). This association was not affected by adjusting for BMI change. CONCLUSION: Weight gain was related to brain volume reductions to a similar degree among patients and controls. Antipsychotic dosage-related reductions of brain volume were not confounded by BMI change. Generalizability to contexts involving severe weight gain needs to be established. Furthermore, disentangling effects of medication from illness severity remains a challenge.


Assuntos
Antipsicóticos/uso terapêutico , Encéfalo/diagnóstico por imagem , Clorpromazina/uso terapêutico , Transtornos Psicóticos/tratamento farmacológico , Adulto , Antipsicóticos/farmacologia , Índice de Massa Corporal , Encéfalo/efeitos dos fármacos , Clorpromazina/farmacologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Psychol Med ; 47(4): 655-668, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27830632

RESUMO

BACKGROUND: Excessive alcohol use is associated with brain damage but less is known about brain effects from moderate alcohol use. Previous findings indicate that patients with severe mental illness, particularly schizophrenia, are vulnerable to alcohol-related brain damage. We investigated the association between levels of alcohol consumption and cortical and subcortical brain structures in schizophrenia and bipolar disorder patients and healthy controls, and investigated for group differences for this association. METHOD: 1.5 T structural magnetic resonance images were acquired of 609 alcohol-using participants (165 schizophrenia patients, 172 bipolar disorder patients, 272 healthy controls), mean (s.d.) age 34.2 (9.9) years, 52% men. Past year alcohol use was assessed with the Alcohol Use Disorder Identification Test - Consumption part (AUDIT-C). General linear models were used to investigate associations between AUDIT-C score and cortical thickness, surface area, and total brain and subcortical volumes. RESULTS: Increasing AUDIT-C score was linearly associated with thinner cortex in medial and dorsolateral frontal and parieto-occipital regions, and with larger left lateral ventricle volume. There was no significant interaction between AUDIT-C score and diagnostic group. The findings remained significant after controlling for substance use disorders, antipsychotic medication and illness severity. CONCLUSION: The results show a dose-dependent relationship between alcohol use and thinner cortex and ventricular expansion. The findings are present also at lower levels of alcohol consumption and do not differ between schizophrenia or bipolar disorder patients compared to healthy controls. Our results do not support previous findings of increased vulnerability for alcohol-related brain damage in severe mental illness.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/patologia , Transtorno Bipolar/patologia , Córtex Cerebral/patologia , Ventrículos Cerebrais/patologia , Esquizofrenia/patologia , Adulto , Transtorno Bipolar/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Ventrículos Cerebrais/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Esquizofrenia/diagnóstico por imagem
4.
Mol Psychiatry ; 21(12): 1710-1716, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26857596

RESUMO

Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10-7) and thalamus (d=-0.148; P=4.27 × 10-3) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10-5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.


Assuntos
Transtorno Bipolar/fisiopatologia , Encéfalo/fisiopatologia , Adulto , Encéfalo/anatomia & histologia , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Estudos Retrospectivos
5.
Psychol Med ; 46(3): 589-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26526001

RESUMO

BACKGROUND: First-episode psychosis (FEP) patients show structural brain abnormalities. Whether the changes are progressive or not remain under debate, and the results from longitudinal magnetic resonance imaging (MRI) studies are mixed. We investigated if FEP patients showed a different pattern of regional brain structural change over a 1-year period compared with healthy controls, and if putative changes correlated with clinical characteristics and outcome. METHOD: MRIs of 79 FEP patients [SCID-I-verified diagnoses: schizophrenia, psychotic bipolar disorder, or other psychoses, mean age 27.6 (s.d. = 7.7) years, 66% male] and 82 healthy controls [age 29.3 (s.d. = 7.2) years, 66% male] were acquired from the same 1.5 T scanner at baseline and 1-year follow-up as part of the Thematically Organized Psychosis (TOP) study, Oslo, Norway. Scans were automatically processed with the longitudinal stream in FreeSurfer that creates an unbiased within-subject template image. General linear models were used to analyse longitudinal change in a wide range of subcortical volumes and detailed thickness and surface area estimates across the entire cortex, and associations with clinical characteristics. RESULTS: FEP patients and controls did not differ significantly in annual percentage change in cortical thickness or area in any cortical region, or in any of the subcortical structures after adjustment for multiple comparisons. Within the FEP group, duration of untreated psychosis, age at illness onset, antipsychotic medication use and remission at follow-up were not related to longitudinal brain change. CONCLUSIONS: We found no significant longitudinal brain changes over a 1-year period in FEP patients. Our results do not support early progressive brain changes in psychotic disorders.


Assuntos
Transtorno Bipolar/patologia , Córtex Cerebral/patologia , Transtornos Psicóticos/patologia , Esquizofrenia/patologia , Adolescente , Adulto , Antipsicóticos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Estudos de Casos e Controles , Progressão da Doença , Feminino , Seguimentos , Humanos , Modelos Lineares , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Noruega , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Adulto Jovem
7.
Mol Psychiatry ; 21(4): 547-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26033243

RESUMO

The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.


Assuntos
Encéfalo/patologia , Esquizofrenia/patologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Estudos Prospectivos , Esquizofrenia/genética
8.
Psychol Med ; 42(6): 1329-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22029970

RESUMO

BACKGROUND: The increased occurrence of obstetric complications (OCs) in patients with schizophrenia suggests that alterations in neurodevelopment may be of importance to the aetiology of the illness. Abnormal cortical folding may reflect subtle deviation from normal neurodevelopment during the foetal or neonatal period. In the present study, we hypothesized that OCs would be related to cortical folding abnormalities in schizophrenia patients corresponding to areas where patients with schizophrenia display altered cortical folding when compared with healthy controls. METHOD: In total, 54 schizophrenia patients and 54 healthy control subjects underwent clinical examination and magnetic resonance image scanning on a 1.5 T scanner. Information on OCs was collected from original birth records. An automated algorithm was used to calculate a three-dimensional local gyrification index (lGI) at numerous points across the cortical mantle. RESULTS: In both schizophrenia patients and healthy controls, an increasing number of OCs was significantly related to lower lGI in the left pars triangularis (p<0.0005) in Broca's area. For five other anatomical cortical parcellations in the left hemisphere, a similar trend was demonstrated. No significant relationships between OCs and lGI were found in the right hemisphere and there were no significant case-control differences in lGI. CONCLUSIONS: The reduced cortical folding in the left pars triangularis, associated with OCs in both patients and control subjects suggests that the cortical effect of OCs is caused by factors shared by schizophrenia patients and healthy controls rather than factors related to schizophrenia alone.


Assuntos
Desenvolvimento Fetal/fisiologia , Lobo Frontal/anormalidades , Complicações do Trabalho de Parto/patologia , Esquizofrenia/patologia , Adulto , Algoritmos , Animais , Estudos de Casos e Controles , Feminino , Lobo Frontal/embriologia , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Complicações do Trabalho de Parto/epidemiologia , Gravidez , Prevalência , Esquizofrenia/epidemiologia
9.
J Int Neuropsychol Soc ; 17(6): 1080-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22013998

RESUMO

Relationships between cortical brain structure and neurocognitive functioning have been reported in schizophrenia, but findings are inconclusive, and only a few studies in bipolar disorder have addressed this issue. This is the first study to directly compare relationships between cortical thickness and surface area with neurocognitive functioning in patients with schizophrenia (n = 117) and bipolar disorder (n = 121) and healthy controls (n = 192). MRI scans were obtained, and regional cortical thickness and surface area measurements were analyzed for relationships with test scores from 6 neurocognitive domains. In the combined sample, cortical thickness in the right rostral anterior cingulate was inversely related to working memory, and cortical surface area in four frontal and temporal regions were positively related to neurocognitive functioning. A positive relationship between left transverse temporal thickness and processing speed was specific to schizophrenia. A negative relationship between right temporal pole thickness and working memory was specific to bipolar disorder. In conclusion, significant cortical structure/function relationships were found in a large sample of healthy controls and patients with schizophrenia or bipolar disorder. The differences that were found between schizophrenia and bipolar may indicate differential relationship patterns in the two disorders, which may be of relevance for understanding the underlying pathophysiology.


Assuntos
Transtorno Bipolar/complicações , Córtex Cerebral/patologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Esquizofrenia/complicações , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...