Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(11): e3001855, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36395330

RESUMO

The neuronal microtubule cytoskeleton is key to establish axon-dendrite polarity. Dendrites are characterized by the presence of minus-end out microtubules. However, the mechanisms that organize these microtubules with the correct orientation are still poorly understood. Using Caenorhabditis elegans as a model system for microtubule organization, we characterized the role of 2 microtubule minus-end related proteins in this process, the microtubule minus-end stabilizing protein calmodulin-regulated spectrin-associated protein (CAMSAP/PTRN-1), and the NINEIN homologue, NOCA-2 (noncentrosomal microtubule array). We found that CAMSAP and NINEIN function in parallel to mediate microtubule organization in dendrites. During dendrite outgrowth, RAB-11-positive vesicles localized to the dendrite tip to nucleate microtubules and function as a microtubule organizing center (MTOC). In the absence of either CAMSAP or NINEIN, we observed a low penetrance MTOC vesicles mislocalization to the cell body, and a nearly fully penetrant phenotype in double mutant animals. This suggests that both proteins are important for localizing the MTOC vesicles to the growing dendrite tip to organize microtubules minus-end out. Whereas NINEIN localizes to the MTOC vesicles where it is important for the recruitment of the microtubule nucleator γ-tubulin, CAMSAP localizes around the MTOC vesicles and is cotranslocated forward with the MTOC vesicles upon dendritic growth. Together, these results indicate that microtubule nucleation from the MTOC vesicles and microtubule stabilization are both important to localize the MTOC vesicles distally to organize dendritic microtubules minus-end out.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Microtúbulos , Centro Organizador dos Microtúbulos , Tubulina (Proteína) , Dendritos , Proteínas Associadas aos Microtúbulos , Proteínas de Caenorhabditis elegans/genética
2.
Elife ; 92020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293562

RESUMO

The development of a polarized neuron relies on the selective transport of proteins to axons and dendrites. Although it is well known that the microtubule cytoskeleton has a central role in establishing neuronal polarity, how its specific organization is established and maintained is poorly understood. Using the in vivo model system Caenorhabditis elegans, we found that the highly conserved UNC-119 protein provides a link between the membrane-associated Ankyrin (UNC-44) and the microtubule-associated CRMP (UNC-33). Together they form a periodic membrane-associated complex that anchors axonal and dendritic microtubule bundles to the cortex. This anchoring is critical to maintain microtubule organization by opposing kinesin-1 powered microtubule sliding. Disturbing this molecular complex alters neuronal polarity and causes strong developmental defects of the nervous system leading to severely paralyzed animals.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/fisiologia , Microtúbulos/fisiologia , Neurônios/fisiologia , Animais , Anquirinas/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Células Cultivadas , Córtex Cerebral/fisiologia , Locomoção , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso
3.
Curr Biol ; 30(5): 899-908.e6, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32084403

RESUMO

Neuronal dendrites are characterized by an anti-parallel microtubule organization. The mixed oriented microtubules promote dendrite development and facilitate polarized cargo trafficking; however, the mechanism that regulates dendritic microtubule organization is still unclear. Here, we found that the kinesin-14 motor KIFC3 is important for organizing dendritic microtubules and to control dendrite development. The kinesin-14 motor proteins (Drosophila melanogaster Ncd, Saccharomyces cerevisiae Kar3, Saccharomyces pombe Pkl1, and Xenopus laevis XCTK2) are characterized by a C-terminal motor domain and are well described to organize the spindle microtubule during mitosis using an additional microtubule binding site in the N terminus [1-4]. In mammals, there are three kinesin-14 members, KIFC1, KIFC2, and KIFC3. It was recently shown that KIFC1 is important for organizing axonal microtubules in neurons, a process that depends on the two microtubule-interacting domains [5]. Unlike KIFC1, KIFC2 and KIFC3 lack the N-terminal microtubule binding domain and only have one microtubule-interacting domain, the motor domain [6, 7]. Thus, in order to regulate microtubule-microtubule crosslinking or sliding, KIFC2 and KIFC3 need to interact with additional microtubule binding proteins to connect two microtubules. We found that KIFC3 has a dendrite-specific distribution and interacts with microtubule minus-end binding protein CAMSAP2. Depletion of KIFC3 or CAMSAP2 results in increased microtubule dynamics during dendritic development. We propose a model in which CAMSAP2 anchors KIFC3 at microtubule minus ends and immobilizes microtubule arrays in dendrites.


Assuntos
Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Transporte Proteico
4.
Neuron ; 104(2): 305-321.e8, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31474508

RESUMO

The axon initial segment (AIS) is a unique neuronal compartment that plays a crucial role in the generation of action potential and neuronal polarity. The assembly of the AIS requires membrane, scaffolding, and cytoskeletal proteins, including Ankyrin-G and TRIM46. How these components cooperate in AIS formation is currently poorly understood. Here, we show that Ankyrin-G acts as a scaffold interacting with End-Binding (EB) proteins and membrane proteins such as Neurofascin-186 to recruit TRIM46-positive microtubules to the plasma membrane. Using in vitro reconstitution and cellular assays, we demonstrate that TRIM46 forms parallel microtubule bundles and stabilizes them by acting as a rescue factor. TRIM46-labeled microtubules drive retrograde transport of Neurofascin-186 to the proximal axon, where Ankyrin-G prevents its endocytosis, resulting in stable accumulation of Neurofascin-186 at the AIS. Neurofascin-186 enrichment in turn reinforces membrane anchoring of Ankyrin-G and subsequent recruitment of TRIM46-decorated microtubules. Our study reveals feedback-based mechanisms driving AIS assembly.


Assuntos
Anquirinas/metabolismo , Segmento Inicial do Axônio/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Animais , Segmento Inicial do Axônio/ultraestrutura , Transporte Axonal , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Citoesqueleto , Endocitose , Retroalimentação Fisiológica , Células HEK293 , Hipocampo/citologia , Humanos , Microtúbulos/ultraestrutura , Neurônios/ultraestrutura , Ratos , Proteínas com Motivo Tripartido/metabolismo
5.
J Neurosci ; 39(25): 4864-4873, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30967428

RESUMO

Selective cargo transport into axons and dendrites over the microtubule network is essential for neuron polarization. The axon initial segment (AIS) separates the axon from the somatodendritic compartment and controls the microtubule-dependent transport into the axon. Interestingly, the AIS has a characteristic microtubule organization; it contains bundles of closely spaced microtubules with electron dense cross-bridges, referred to as microtubule fascicles. The microtubule binding protein TRIM46 localizes to the AIS and when overexpressed in non-neuronal cells forms microtubule arrays that closely resemble AIS fascicles in neurons. However, the precise role of TRIM46 in microtubule fasciculation in neurons has not been studied. Here we developed a novel correlative light and electron microscopy approach to study AIS microtubule organization. We show that in cultured rat hippocampal neurons of both sexes, TRIM46 levels steadily increase at the AIS during early neuronal differentiation and at the same time closely spaced microtubules form, whereas the fasciculated microtubules appear at later developmental stages. Moreover, we localized TRIM46 to the electron dense cross-bridges and show that depletion of TRIM46 causes loss of cross-bridges and increased microtubule spacing. These data indicate that TRIM46 has an essential role in organizing microtubule fascicles in the AIS.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is a specialized region at the proximal axon where the action potential is initiated. In addition the AIS separates the axon from the somatodendritic compartment, where it controls protein transport to establish and maintain neuron polarity. Cargo vesicles destined for the axon recognize specialized microtubule tracks that enter the AIS. Interestingly the microtubules entering the AIS form crosslinked bundles, called microtubule fascicules. Recently we found that the microtubule-binding protein TRIM46 localizes to the AIS, where it may organize the AIS microtubules. In the present study we developed a novel correlative light and electron microscopy approach to study the AIS microtubules during neuron development and identified an essential role for TRIM46 in microtubule fasciculation.


Assuntos
Fasciculação Axônica/fisiologia , Segmento Inicial do Axônio/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Animais , Polaridade Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Neurônios/citologia , Ratos , Proteínas com Motivo Tripartido/genética
6.
Cell Rep ; 26(8): 1988-1999.e6, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30784582

RESUMO

The motor protein kinesin-1 plays an important role in polarized sorting of transport vesicles to the axon. However, the mechanism by which the axonal entry of kinesin-1-dependent cargo transport is regulated remains unclear. Microtubule-associated protein MAP7 (ensconsin in Drosophila) is an essential kinesin-1 cofactor and promotes kinesin-1 recruitment to microtubules. Here, we found that MAP7 family member MAP7D2 concentrates at the proximal axon, where it overlaps with the axon initial segment and interacts with kinesin-1. Depletion of MAP7D2 results in reduced axonal cargo entry and defects in axon development and neuronal migration. We propose a model in which MAP7D2 in the proximal axon locally promotes kinesin-1-mediated cargo entry into the axon.


Assuntos
Transporte Axonal , Axônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Ratos , Ratos Wistar
7.
J Cell Sci ; 131(20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254025

RESUMO

The specific organization of the neuronal microtubule cytoskeleton in axons and dendrites is an evolutionarily conserved determinant of neuronal polarity that allows for selective cargo sorting. However, how dendritic microtubules are organized and whether local differences influence cargo transport remains largely unknown. Here, we use live-cell imaging to systematically probe the microtubule organization in Caenorhabditiselegans neurons, and demonstrate the contribution of distinct mechanisms in the organization of dendritic microtubules. We found that most non-ciliated neurons depend on unc-116 (kinesin-1), unc-33 (CRMP) and unc-44 (ankyrin) for correct microtubule organization and polarized cargo transport, as previously reported. Ciliated neurons and the URX neuron, however, use an additional pathway to nucleate microtubules at the tip of the dendrite, from the base of the cilium in ciliated neurons. Since inhibition of distal microtubule nucleation affects distal dendritic transport, we propose a model in which the presence of a microtubule-organizing center at the dendrite tip ensures correct dendritic cargo transport.


Assuntos
Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia , Animais , Células Cultivadas
8.
Nat Methods ; 14(5): 479-482, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28394337

RESUMO

The actin cytoskeleton is essential for many fundamental biological processes, but tools for directly manipulating actin dynamics are limited to cell-permeable drugs that preclude single-cell perturbations. Here we describe DeActs, genetically encoded actin-modifying polypeptides, which effectively induce actin disassembly in eukaryotic cells. We demonstrate that DeActs are universal tools for studying the actin cytoskeleton in single cells in culture, tissues, and multicellular organisms including various neurodevelopmental model systems.


Assuntos
ADP Ribose Transferases/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Gelsolina/genética , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Virulência/genética , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Ratos , Transfecção
9.
BMC Biol ; 14: 66, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506200

RESUMO

BACKGROUND: Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. RESULTS: We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. CONCLUSIONS: The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.


Assuntos
Proteínas de Caenorhabditis elegans/isolamento & purificação , Caenorhabditis elegans/metabolismo , Guanilato Quinases/metabolismo , Especificidade de Órgãos , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Animais , Biotinilação , Proteínas de Caenorhabditis elegans/metabolismo , Imunofluorescência , Complexos Multiproteicos/isolamento & purificação , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Reprodutibilidade dos Testes
10.
Curr Biol ; 26(7): 849-61, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948876

RESUMO

Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.


Assuntos
Anormalidades Craniofaciais/metabolismo , Doença de Hirschsprung/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Camundongos , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo
11.
Curr Biol ; 26(4): R153-4, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906482

RESUMO

To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal.


Assuntos
Caenorhabditis elegans/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Luz , Organelas/metabolismo , Multimerização Proteica , Animais , Transporte Biológico , Caenorhabditis elegans/química , Caenorhabditis elegans/citologia , Dineínas/química , Cinesinas/química , Optogenética , Organelas/química
12.
Neuron ; 88(6): 1208-1226, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26671463

RESUMO

Axon formation, the initial step in establishing neuronal polarity, critically depends on local microtubule reorganization and is characterized by the formation of parallel microtubule bundles. How uniform microtubule polarity is achieved during axonal development remains an outstanding question. Here, we show that the tripartite motif containing (TRIM) protein TRIM46 plays an instructive role in the initial polarization of neuronal cells. TRIM46 is specifically localized to the newly specified axon and, at later stages, partly overlaps with the axon initial segment (AIS). TRIM46 specifically forms closely spaced parallel microtubule bundles oriented with their plus-end out. Without TRIM46, all neurites have a dendrite-like mixed microtubule organization resulting in Tau missorting and altered cargo trafficking. By forming uniform microtubule bundles in the axon, TRIM46 is required for neuronal polarity and axon specification in vitro and in vivo. Thus, TRIM46 defines a unique axonal cytoskeletal compartment for regulating microtubule organization during neuronal development.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Polaridade Celular/fisiologia , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Proteínas do Tecido Nervoso/fisiologia , Proteínas do Tecido Nervoso/ultraestrutura , Sequência de Aminoácidos , Animais , Células COS , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Córtex Cerebral/ultraestrutura , Chlorocebus aethiops , Feminino , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/fisiologia , Neurônios/ultraestrutura , Gravidez , Ratos , Proteínas Repressoras/fisiologia , Proteínas Repressoras/ultraestrutura
13.
Neuron ; 82(5): 1058-73, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24908486

RESUMO

In neurons, most microtubules are not associated with a central microtubule-organizing center (MTOC), and therefore, both the minus and plus-ends of these non-centrosomal microtubules are found throughout the cell. Microtubule plus-ends are well established as dynamic regulatory sites in numerous processes, but the role of microtubule minus-ends has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and laser-based microsurgery techniques, we show that the CAMSAP/Nezha/Patronin family protein CAMSAP2 specifically localizes to non-centrosomal microtubule minus-ends and is required for proper microtubule organization in neurons. CAMSAP2 stabilizes non-centrosomal microtubules and is required for neuronal polarity, axon specification, and dendritic branch formation in vitro and in vivo. Furthermore, we found that non-centrosomal microtubules in dendrites are largely generated by γ-Tubulin-dependent nucleation. We propose a two-step model in which γ-Tubulin initiates the formation of non-centrosomal microtubules and CAMSAP2 stabilizes the free microtubule minus-ends in order to control neuronal polarity and development.


Assuntos
Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Microtúbulos/metabolismo , Células Piramidais/metabolismo , Animais , Axônios/ultraestrutura , Dendritos/ultraestrutura , Hipocampo/embriologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Proteínas Associadas aos Microtúbulos , Microtúbulos/ultraestrutura , Células Piramidais/ultraestrutura , Ratos
14.
Cell Signal ; 26(1): 19-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24056045

RESUMO

Secretion of Wnt proteins is mediated by the Wnt sorting receptor Wls, which transports Wnt from the Golgi to the cell surface for release. To maintain efficient Wnt secretion, Wls is recycled back to the trans-Golgi network (TGN) through a retromer dependent endosome to TGN retrieval pathway. It has recently been shown that this is mediated by an alternative retromer pathway in which the sorting nexin SNX3 interacts with the cargo-selective subcomplex of the retromer to sort Wls into a retrieval pathway that is morphologically distinct from the classical SNX-BAR dependent retromer pathway. Here, we investigated how sorting of Wls between the two different retromer pathways is specified. We found that when the function of the cargo-selective subcomplex of the retromer is partially disrupted, Wnt secretion can be restored by interfering with the maturation of late endosomes to lysosomes. This leads to an accumulation of Wls in late endosomes and facilitates the retrieval of Wls through a SNX-BAR dependent retromer pathway. Our results are consistent with a model in which spatial separation of the SNX3 and SNX-BAR retromer complexes along the endosomal maturation pathway as well as cargo-specific mechanisms contribute to the selective retrieval of Wls through the SNX3 retromer pathway.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Endossomos/metabolismo , Mutação/genética , Proteínas Wnt/metabolismo , Animais , Caenorhabditis elegans/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Técnicas de Silenciamento de Genes , Genes Dominantes , Modelos Biológicos , Subunidades Proteicas/genética , Transdução de Sinais , Transgenes
15.
Acta Neuropathol Commun ; 1: 24, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24252306

RESUMO

BACKGROUND: Protein aggregation and the formation of intracellular inclusions are a central feature of many neurodegenerative disorders, but precise knowledge about their pathogenic role is lacking in most instances. Here we have characterized inclusions formed in transgenic mice carrying the P56S mutant form of VAPB that causes various motor neuron syndromes including ALS8. RESULTS: Inclusions in motor neurons of VAPB-P56S transgenic mice are characterized by the presence of smooth ER-like tubular profiles, and are immunoreactive for factors that operate in the ER associated degradation (ERAD) pathway, including p97/VCP, Derlin-1, and the ER membrane chaperone BAP31. The presence of these inclusions does not correlate with signs of axonal and neuronal degeneration, and axotomy leads to their gradual disappearance, indicating that they represent reversible structures. Inhibition of the proteasome and knockdown of the ER membrane chaperone BAP31 increased the size of mutant VAPB inclusions in primary neuron cultures, while knockdown of TEB4, an ERAD ubiquitin-protein ligase, reduced their size. Mutant VAPB did not codistribute with mutant forms of seipin that are associated with an autosomal dominant motor neuron disease, and accumulate in a protective ER derived compartment termed ERPO (ER protective organelle) in neurons. CONCLUSIONS: The data indicate that the VAPB-P56S inclusions represent a novel reversible ER quality control compartment that is formed when the amount of mutant VAPB exceeds the capacity of the ERAD pathway and that isolates misfolded and aggregated VAPB from the rest of the ER. The presence of this quality control compartment reveals an additional level of flexibility of neurons to cope with misfolded protein stress in the ER.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Retículo Endoplasmático/fisiologia , Corpos de Inclusão/fisiologia , Neurônios Motores/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Células Cultivadas , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Degradação Associada com o Retículo Endoplasmático/fisiologia , Técnicas de Silenciamento de Genes , Hipocampo/fisiopatologia , Hipocampo/ultraestrutura , Corpos de Inclusão/ultraestrutura , Camundongos Transgênicos , Neurônios Motores/ultraestrutura , Mutação , Ratos , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura , Proteínas de Transporte Vesicular/genética
16.
Dev Cell ; 26(4): 326-8, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23987508

RESUMO

Molecular motors employ specific adaptor proteins to dock on transport cargos. Reporting in The Journal of Cell Biology, Fu and Holzbaur (2013) show that the adaptor JNK interacting protein 1 (JIP1) binds kinesin-1 and dynactin and controls bidirectional axonal amyloid precursor protein trafficking, suggesting a regulatory role for adaptors during cargo transport.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal , Dineínas/metabolismo , Cinesinas/metabolismo , Animais
17.
Nat Cell Biol ; 13(8): 914-923, 2011 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-21725319

RESUMO

Wnt proteins are lipid-modified glycoproteins that play a central role in development, adult tissue homeostasis and disease. Secretion of Wnt proteins is mediated by the Wnt-binding protein Wntless (Wls), which transports Wnt from the Golgi network to the cell surface for release. It has recently been shown that recycling of Wls through a retromer-dependent endosome-to-Golgi trafficking pathway is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is poorly understood. Here, we report that Wls recycling is mediated through a retromer pathway that is independent of the retromer sorting nexins SNX1-SNX2 and SNX5-SNX6. We have found that the unrelated sorting nexin, SNX3, has an evolutionarily conserved function in Wls recycling and Wnt secretion and show that SNX3 interacts directly with the cargo-selective subcomplex of the retromer to sort Wls into a morphologically distinct retrieval pathway. These results demonstrate that SNX3 is part of an alternative retromer pathway that functionally separates the retrograde transport of Wls from other retromer cargo.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nexinas de Classificação/metabolismo , Proteínas Wnt/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico Ativo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Interferência de RNA , Transdução de Sinais , Nexinas de Classificação/antagonistas & inibidores , Nexinas de Classificação/genética , Rede trans-Golgi/metabolismo
18.
Development ; 138(14): 2915-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21653614

RESUMO

The migration of neuroblasts along the anteroposterior body axis of C. elegans is controlled by multiple Wnts that act partially redundantly to guide cells to their precisely defined final destinations. How positional information is specified by this system is, however, still largely unknown. Here, we used a novel fluorescent in situ hybridization methods to generate a quantitative spatiotemporal expression map of the C. elegans Wnt genes. We found that the five Wnt genes are expressed in a series of partially overlapping domains along the anteroposterior axis, with a predominant expression in the posterior half of the body. Furthermore, we show that a secreted Frizzled-related protein is expressed at the anterior end of the body axis, where it inhibits Wnt signaling to control neuroblast migration. Our findings reveal that a system of regionalized Wnt gene expression and anterior Wnt inhibition guides the highly stereotypic migration of neuroblasts in C. elegans. Opposing expression of Wnts and Wnt inhibitors has been observed in basal metazoans and in the vertebrate neurectoderm. Our results in C. elegans support the notion that a system of posterior Wnt signaling and anterior Wnt inhibition is an evolutionarily conserved principle of primary body axis specification.


Assuntos
Padronização Corporal/fisiologia , Caenorhabditis elegans/embriologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Clonagem Molecular , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/citologia , Plasmídeos/genética
19.
EMBO J ; 29(24): 4094-105, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21076391

RESUMO

Wnt proteins are lipid-modified glycoproteins that have important roles in development, adult tissue homeostasis and disease. Secretion of Wnt proteins from producing cells is mediated by the Wnt-binding protein MIG-14/Wls, which binds Wnt in the Golgi network and transports it to the cell surface for release. It has recently been shown that recycling of MIG-14/Wls from the plasma membrane to the trans-Golgi network is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is still poorly understood. In this study, we report the identification of MTM-6 and MTM-9 as novel regulators of MIG-14/Wls trafficking in Caenorhabditis elegans. MTM-6 and MTM-9 are myotubularin lipid phosphatases that function as a complex to dephosphorylate phosphatidylinositol-3-phosphate, a central regulator of endosomal trafficking. We show that mutation of mtm-6 or mtm-9 leads to defects in several Wnt-dependent processes and demonstrate that MTM-6 is required in Wnt-producing cells as part of the MIG-14/Wls-recycling pathway. This function is evolutionarily conserved, as the MTM-6 orthologue DMtm6 is required for Wls stability and Wg secretion in Drosophila. We conclude that regulation of endosomal trafficking by the MTM-6/MTM-9 myotubularin complex is required for the retromer-dependent recycling of MIG-14/Wls and Wnt secretion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Transporte/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Drosophila/enzimologia , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Wnt/metabolismo
20.
Dev Cell ; 17(1): 110-22, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19619496

RESUMO

Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150(glued) component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.


Assuntos
Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo , Animais , Transporte Biológico/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Linhagem Celular , Complexo Dinactina , Dineínas/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Filogenia , Isoformas de Proteínas/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nexinas de Classificação , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/classificação , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...