Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Transl Stroke Res ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396252

RESUMO

While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.

2.
Neuroscience ; 530: 46-55, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37640133

RESUMO

Patients with traumatic brain injury are typically maintained at low-normal levels of arterial partial pressure of carbon dioxide (PaCO2) to counteract the risk of elevated intracranial pressure during intensive care. However, several studies suggest that management at hypercarbic levels may have therapeutic benefit. Here we examined the impact of CO2 levels on spreading depolarizations (SD), a mechanism and marker of acute lesion development in stroke and brain trauma. In an acute preparation of mechanically ventilated (30/70 O2/N2) female rats, SDs were evoked by cortical KCl application and monitored by electrophysiology and laser doppler flowmetry; CO2 levels were adjusted by ventilator settings and supplemental CO2. During 90 min of KCl application, rats were maintained at hypocapnia (end-tidal CO2 22 ± 2 mmHg) or hypercapnia (57 ± 4 mmHg) but did not differ significantly in arterial pH (7.31 ± 0.10 vs. 7.22 ± 0.08, p = 0.31) or other variables. Surprisingly, there was no difference between groups in the number of SDs recorded (10.7 ± 4.2 vs. 11.7 ± 3.1; n = 3 rats/group; p = 0.75) nor in SD durations (64 ± 27 vs. 69 ± 37 sec, p = 0.54). In separate experiments (n = 3), hypoxia was induced by decreasing inhaled O2 to 10% and single SDs were induced under interleaved conditions of hypo-, normo-, and hypercapnia. No differences in SD duration were observed. In both normoxia and hypoxia experiments, however, mean arterial pressures were negatively correlated with SD durations (normoxia R2 = -0.29; hypoxia R2 = -0.61, p's < 0.001). Our results suggest that any therapeutic benefit of elevated CO2 therapy may be dependent on an acidic shift in pH or may only be observed in conditions of focal brain injury.

3.
Life Sci ; 327: 121833, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302793

RESUMO

AIMS: Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS: A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS: Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE: Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Humanos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Serotonina/farmacologia , Neurônios
4.
Brain Commun ; 5(2): fcad080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038498

RESUMO

In DISCHARGE-1, a recent Phase III diagnostic trial in aneurysmal subarachnoid haemorrhage patients, spreading depolarization variables were found to be an independent real-time biomarker of delayed cerebral ischaemia. We here investigated based on prospectively collected data from DISCHARGE-1 whether delayed infarcts in the anterior, middle, or posterior cerebral artery territories correlate with (i) extravascular blood volumes; (ii) predefined spreading depolarization variables, or proximal vasospasm assessed by either (iii) digital subtraction angiography or (iv) transcranial Doppler-sonography; and whether spreading depolarizations and/or vasospasm are mediators between extravascular blood and delayed infarcts. Relationships between variable groups were analysed using Spearman correlations in 136 patients. Thereafter, principal component analyses were performed for each variable group. Obtained components were included in path models with a priori defined structure. In the first path model, we only included spreading depolarization variables, as our primary interest was to investigate spreading depolarizations. Standardised path coefficients were 0.22 for the path from extravascular bloodcomponent to depolarizationcomponent (P = 0.010); and 0.44 for the path from depolarizationcomponent to the first principal component of delayed infarct volume (P < 0.001); but only 0.07 for the direct path from bloodcomponent to delayed infarctcomponent (P = 0.36). Thus, the role of spreading depolarizations as a mediator between blood and delayed infarcts was confirmed. In the principal component analysis of extravascular blood volume, intraventricular haemorrhage was not represented in the first component. Therefore, based on the correlation analyses, we also constructed another path model with bloodcomponent without intraventricular haemorrhage as first and intraventricular haemorrhage as second extrinsic variable. We found two paths, one from (subarachnoid) bloodcomponent to delayed infarctcomponent with depolarizationcomponent as mediator (path coefficients from bloodcomponent to depolarizationcomponent = 0.23, P = 0.03; path coefficients from depolarizationcomponent to delayed infarctcomponent = 0.29, P = 0.002), and one from intraventricular haemorrhage to delayed infarctcomponent with angiographic vasospasmcomponent as mediator variable (path coefficients from intraventricular haemorrhage to vasospasmcomponent = 0.24, P = 0.03; path coefficients from vasospasmcomponent to delayed infarctcomponent = 0.35, P < 0.001). Human autopsy studies shaped the hypothesis that blood clots on the cortex surface suffice to cause delayed infarcts beneath the clots. Experimentally, clot-released factors induce cortical spreading depolarizations that trigger (i) neuronal cytotoxic oedema and (ii) spreading ischaemia. The statistical mediator role of spreading depolarization variables between subarachnoid blood volume and delayed infarct volume supports this pathogenetic concept. We did not find that angiographic vasospasm triggers spreading depolarizations, but angiographic vasospasm contributed to delayed infarct volume. This could possibly result from enhancement of spreading depolarization-induced spreading ischaemia by reduced upstream blood supply.

5.
Neurosurgery ; 93(4): 924-931, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083682

RESUMO

BACKGROUND AND OBJECTIVES: Spreading depolarizations (SDs) are a pathological mechanism that mediates lesion development in cerebral gray matter. They occur in ∼60% of patients with severe traumatic brain injury (TBI), often in recurring and progressive patterns from days 0 to 10 after injury, and are associated with worse outcomes. However, there are no protocols or trials suggesting how SD monitoring might be incorporated into clinical management. The objective of this protocol is to determine the feasibility and efficacy of implementing a treatment protocol for intensive care of patients with severe TBI that is guided by electrocorticographic monitoring of SDs. METHODS: Patients who undergo surgery for severe TBI with placement of a subdural electrode strip will be eligible for enrollment. Those who exhibit SDs on electrocorticography during intensive care will be randomized 1:1 to either (1) standard care that is blinded to the further course of SDs or (2) a tiered intervention protocol based on efficacy to suppress further SDs. Interventions aim to block the triggering and propagation of SDs and include adjusted targets for management of blood pressure, CO 2 , temperature, and glucose, as well as ketamine pharmacotherapy up to 4 mg/kg/ hour. Interventions will be escalated and de-escalated depending on the course of SD pathology. EXPECTED OUTCOMES: We expect to demonstrate that electrocorticographic monitoring of SDs can be used as a real- time diagnostic in intensive care that leads to meaningful changes in patient management and a reduction in secondary injury, as compared with standard care, without increasing medical complications or adverse events. DISCUSSION: This trial holds potential for personalization of intensive care management by tailoring therapies based on monitoring and confirmation of the targeted neuronal mechanism of SD. Results are expected to validate the concept of this approach, inform refinement of the treatment protocol, and lead to larger-scale trials.


Assuntos
Lesões Encefálicas Traumáticas , Depressão Alastrante da Atividade Elétrica Cortical , Humanos , Estudos de Viabilidade , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Recidiva Local de Neoplasia , Córtex Cerebral , Eletrocorticografia , Lesões Encefálicas Traumáticas/terapia
6.
Neurocrit Care ; 39(3): 655-668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36539593

RESUMO

BACKGROUND: Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed. METHODS: We performed simultaneous calcium and OISI of SDs in GCaMP6f mice. SDs propagate through the cortex as a pathological wave and trigger a neurovascular response that can be imaged with both techniques. We imaged both mechanically stimulated SDs (sSDs) in healthy brains and terminal SDs (tSDs) induced by system hypoxia and cardiopulmonary failure. RESULTS: We observed a lag in the detection of SDs in the OISI channels compared with CI. sSDs had a faster velocity than tSDs, and tSDs had a greater initial velocity for the first 400 µm when observed with CI compared with OISI. However, both imaging methods revealed similar characteristics, including a decrease in the sSD (but not tSD) velocities as the wave moved away from the site of initial detection. CI and OISI also showed similar spatial propagation of the SD throughout the image field. Importantly, only OISI allowed regional ischemia to be detected before tSDs occurred. CONCLUSIONS: Altogether, data indicate that monitoring either neural activity or intrinsic signals with high-resolution optical imaging can be useful to assess SDs, but OISI may be a clinically applicable way to predict, and therefore possibly mitigate, hypoxic-ischemic tSDs.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Camundongos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Canais de Cálcio , Cálcio , Encéfalo , Isquemia
7.
Neuropharmacology ; 216: 109176, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35798091

RESUMO

Spreading depolarizations (SDs) are characterized by near-complete breakdown of the transmembrane ion gradients, cytotoxic edema, and glutamate release. SDs are associated with poor neurological outcomes in cerebrovascular diseases and brain trauma. Ketamine, a N-methyl-d-aspartate receptor antagonist, has shown to inhibit SDs in animal models and in humans. However, little is known about its SD-inhibitory effect during long-term administration. Lissencephalic animal models have shown that ketamine loses its SD-blocking effect after some minutes to hours. Physio-anatomical differences between lissencephalic and the more evolved gyrencephalic animals may affect their SDs-blocking effect. Therefore, information from the last may have more translational potential. Therefore, the aim of this study was to investigate the 18 h-effect of s-ketamine as a basis for its possible long-term clinical use for neuroprotection. For this purpose, two gyrencephalic swine brain models were used. In one, SDs were elicited through topical application of KCl; in the other model, SDs were spontaneously induced after occlusion of the middle cerebral artery. S-ketamine was administered at therapeutic human doses, 2, 4 and 5 mg/kg BW/h for up to 18 h. Our findings indicate that s-ketamine significantly reduces SD incidence and expansion without clear evidence of loss of its efficacy. Pharmacological susceptibility of SDs to s-ketamine in both the ischemic gyrencephalic brain and well-perfused brain was observed. SDs were most potently inhibited by s-ketamine doses that are above the clinically recommended (4 mg/kg BW/h and 5 mg/kg BW/h). Nonetheless, such doses are given by neurointensivists in individual cases. Our results give momentum to further investigate the feasibility of a multicenter, neuromonitoring-guided, proof-of-concept clinical trial.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Ketamina , Animais , Encéfalo , Humanos , Isquemia , Ketamina/farmacologia , Ketamina/uso terapêutico , Potássio/farmacologia , Suínos
8.
Brain ; 145(4): 1264-1284, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35411920

RESUMO

Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (ß = 0.474, P < 0.001), delayed median Glasgow Coma Score (ß = -0.201, P = 0.005) and peak transcranial Doppler (ß = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Lesões Encefálicas/complicações , Infarto Cerebral/complicações , Eletrocorticografia , Humanos , Estudos Prospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico por imagem
9.
Neurocrit Care ; 37(Suppl 1): 83-101, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257321

RESUMO

BACKGROUND: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.


Assuntos
Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Acidente Vascular Cerebral , Lesões Encefálicas/terapia , Consenso , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos
10.
Neurocrit Care ; 37(Suppl 1): 31-48, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35174446

RESUMO

BACKGROUND: Both seizures and spreading depolarizations (SDs) are commonly detected using electrocorticography (ECoG) after severe traumatic brain injury (TBI). A close relationship between seizures and SDs has been described, but the implications of detecting either or both remain unclear. We sought to characterize the relationship between these two phenomena and their clinical significance. METHODS: We performed a post hoc analysis of a prospective observational clinical study of patients with severe TBI requiring neurosurgery at five academic neurotrauma centers. A subdural electrode array was placed intraoperatively and ECoG was recorded during intensive care. SDs, seizures, and high-frequency background characteristics were quantified offline using published standards and terminology. The primary outcome was the Glasgow Outcome Scale-Extended score at 6 months post injury. RESULTS: There were 138 patients with valid ECoG recordings; the mean age was 47 ± 19 years, and 104 (75%) were men. Overall, 2,219 ECoG-detected seizures occurred in 38 of 138 (28%) patients in a bimodal pattern, with peak incidences at 1.7-1.8 days and 3.8-4.0 days post injury. Seizures detected on scalp electroencephalography (EEG) were diagnosed by standard clinical care in only 18 of 138 (13%). Of 15 patients with ECoG-detected seizures and contemporaneous scalp EEG, seven (47%) had no definite scalp EEG correlate. ECoG-detected seizures were significantly associated with the severity and number of SDs, which occurred in 83 of 138 (60%) of patients. Temporal interactions were observed in 17 of 24 (70.8%) patients with both ECoG-detected seizures and SDs. After controlling for known prognostic covariates and the presence of SDs, seizures detected on either ECoG or scalp EEG did not have an independent association with 6-month functional outcome but portended worse outcome among those with clustered or isoelectric SDs. CONCLUSIONS: In patients with severe TBI requiring neurosurgery, seizures were half as common as SDs. Seizures would have gone undetected without ECoG monitoring in 20% of patients. Although seizures alone did not influence 6-month functional outcomes in this cohort, they were independently associated with electrographic worsening and a lack of motor improvement following surgery. Temporal interactions between ECoG-detected seizures and SDs were common and held prognostic implications. Together, seizures and SDs may occur along a dynamic continuum of factors critical to the development of secondary brain injury. ECoG provides information integral to the clinical management of patients with TBI.


Assuntos
Lesões Encefálicas Traumáticas , Adulto , Idoso , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/cirurgia , Eletrocorticografia/efeitos adversos , Eletroencefalografia , Feminino , Escala de Resultado de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/diagnóstico , Convulsões/etiologia
11.
Neurocrit Care ; 37(Suppl 1): 11-30, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194729

RESUMO

BACKGROUND: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s METHODS: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. RESULTS: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. CONCLUSIONS: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico , Humanos , Isquemia
12.
Cell Mol Neurobiol ; 42(4): 1253-1260, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33184769

RESUMO

Spreading depolarizations (SDs) are massive breakdowns of ion homeostasis in the brain's gray matter and are a necessary pathologic mechanism for lesion development in various injury models. However, injury-induced SDs also propagate into remote, healthy tissue where they do not cause cell death, yet their functional long-term effects are unknown. Here we induced SDs in uninjured cortex and hippocampus of Sprague-Dawley rats to study their impact on glutamate receptor subunit expression after three days. We find that both cortical and hippocampal tissue exhibit changes in glutamate receptor subunit expression, including GluA1 and GluN2B, suggesting that SDs in healthy brain tissue may have a role in plasticity. This study is the first to show prolonged effects of SDs on glutamate signaling and has implications for neuroprotection strategies aimed at SD suppression.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Animais , Encéfalo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ácido Glutâmico/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato
13.
Neurocrit Care ; 36(1): 130-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34232458

RESUMO

INTRODUCTION: Seizures and abnormal periodic or rhythmic patterns are observed on continuous electroencephalography monitoring (cEEG) in up to half of patients hospitalized with moderate to severe traumatic brain injury (TBI). We aimed to determine the impact of seizures and abnormal periodic or rhythmic patterns on cognitive outcome 3 months following moderate to severe TBI. METHODS: This was a post hoc analysis of the multicenter randomized controlled phase 2 INTREPID2566 clinical trial conducted from 2010 to 2016 across 20 United States Level I trauma centers. Patients with nonpenetrating TBI and postresuscitation Glasgow Coma Scale scores 4-12 were included. Bedside cEEG was initiated per protocol on admission to intensive care, and the burden of ictal-interictal continuum (IIC) patterns, including seizures, was quantified. A summary global cognition score at 3 months following injury was used as the primary outcome. RESULTS: 142 patients (age mean + / - standard deviation 32 + / - 13 years; 131 [92%] men) survived with a mean global cognition score of 81 + / - 15; nearly one third were considered to have poor functional outcome. 89 of 142 (63%) patients underwent cEEG, of whom 13 of 89 (15%) had severe IIC patterns. The quantitative burden of IIC patterns correlated inversely with the global cognition score (r = - 0.57; p = 0.04). In multiple variable analysis, the log-transformed burden of severe IIC patterns was independently associated with the global cognition score after controlling for demographics, premorbid estimated intelligence, injury severity, sedatives, and antiepileptic drugs (odds ratio 0.73, 95% confidence interval 0.60-0.88; p = 0.002). CONCLUSIONS: The burden of seizures and abnormal periodic or rhythmic patterns was independently associated with worse cognition at 3 months following TBI. Their impact on longer-term cognitive endpoints and the potential benefits of seizure detection and treatment in this population warrant prospective study.


Assuntos
Lesões Encefálicas Traumáticas , Eletroencefalografia , Adulto , Lesões Encefálicas Traumáticas/complicações , Cognição , Eletroencefalografia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Convulsões/diagnóstico , Adulto Jovem
14.
Neurocrit Care ; 37(Suppl 1): 60-66, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34796429

RESUMO

BACKGROUND: How widely spreading depolarizations (SDs) propagate through the gyrencephalic brain, including sulci and deeper cortical areas, remains an important clinical question. Here, we investigated SDs that occur spontaneously after subarachnoid placement of autologous blood clots in sulci of the juvenile swine brain. METHODS: To investigate the three-dimensional spread of waves, animals underwent continuous diffusion-weighted magnetic resonance imaging (DW-MRI) for up to 6 h following clot placement. SD is the mechanism of the cytotoxic edema of developing infarction that is diagnosed by DW-MRI, and DW-MRI also captures transient diffusion restriction caused by SD in less injured or healthy brains. Here, images (b = 0, 375, and 750) were acquired across five coronal slices with 1.25 × 1.25-mm in-plane resolution and 5-mm slice thickness, and the protocol was repeated every 6.83-9.15 s. Spatial drift correction, temporal smoothing, and signal intensity normalization were applied to generate videos of diffusion signal intensity changes for each coronal slice. RESULTS: Review of video data from five animals revealed ten discrete events consisting of focal diffusion restriction that propagated through cerebral cortex. All events originated in the cortex surrounding the sulcal clot, either in the gyrus (n = 4) or in the sulcal depth (n = 6). In six cases, two to three independent waves spread simultaneously in medial, lateral, and antero-posterior directions. Waves traveled within sulcal walls, traversed the depths of sulci to re-emerge on the adjacent gyrus, and, in three cases, spread fully around the dorsolateral convexity. One event spread deep to olfactory regions along midline cortex, and no events were observed contralateral to the subarachnoid clot. CONCLUSIONS: Together, these results suggest that SDs in the injured gyrencephalic brain originate near the injury focus and can spread extensively through the cortex to wide and deep uninjured regions. These findings have implications for transient neurologic deficits in the neurocritically ill patient and relevance to patient monitoring and therapeutics.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Animais , Encéfalo , Córtex Cerebral/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Hemorragia Subaracnóidea/diagnóstico por imagem , Suínos
15.
Neurocrit Care ; 35(Suppl 2): 160-175, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309783

RESUMO

BACKGROUND: Spreading depolarizations (SDs) occur in some 60% of patients receiving intensive care following severe traumatic brain injury and often occur at a higher incidence following serious subarachnoid hemorrhage and malignant hemisphere stroke (MHS); they are independently associated with worse clinical outcome. Detection of SDs to guide clinical management, as is now being advocated, currently requires continuous and skilled monitoring of the electrocorticogram (ECoG), frequently extending over many days. METHODS: We developed and evaluated in two clinical intensive care units (ICU) a software routine capable of detecting SDs both in real time at the bedside and retrospectively and also capable of displaying patterns of their occurrence with time. We tested this prototype software in 91 data files, each of approximately 24 h, from 18 patients, and the results were compared with those of manual assessment ("ground truth") by an experienced assessor blind to the software outputs. RESULTS: The software successfully detected SDs in real time at the bedside, including in patients with clusters of SDs. Counts of SDs by software (dependent variable) were compared with ground truth by the investigator (independent) using linear regression. The slope of the regression was 0.7855 (95% confidence interval 0.7149-0.8561); a slope value of 1.0 lies outside the 95% confidence interval of the slope, representing significant undersensitivity of 79%. R2 was 0.8415. CONCLUSIONS: Despite significant undersensitivity, there was no additional loss of sensitivity at high SD counts, thus ensuring that dense clusters of depolarizations of particular pathogenic potential can be detected by software and depicted to clinicians in real time and also be archived.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hemorragia Subaracnóidea , Encéfalo , Eletrocorticografia , Humanos , Estudos Retrospectivos
16.
Neurocrit Care ; 35(Suppl 1): 4-23, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34236619

RESUMO

Coma and disorders of consciousness (DoC) are highly prevalent and constitute a burden for patients, families, and society worldwide. As part of the Curing Coma Campaign, the Neurocritical Care Society partnered with the National Institutes of Health to organize a symposium bringing together experts from all over the world to develop research targets for DoC. The conference was structured along six domains: (1) defining endotype/phenotypes, (2) biomarkers, (3) proof-of-concept clinical trials, (4) neuroprognostication, (5) long-term recovery, and (6) large datasets. This proceedings paper presents actionable research targets based on the presentations and discussions that occurred at the conference. We summarize the background, main research gaps, overall goals, the panel discussion of the approach, limitations and challenges, and deliverables that were identified.


Assuntos
Coma , Estado de Consciência , Biomarcadores , Coma/diagnóstico , Coma/terapia , Congressos como Assunto , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/terapia , Humanos , National Institutes of Health (U.S.) , Estados Unidos
17.
Neurocrit Care ; 33(1): 1-12, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578124

RESUMO

Coma and disordered consciousness are common manifestations of acute neurological conditions and are among the most pervasive and challenging aspects of treatment in neurocritical care. Gaps exist in patient assessment, outcome prognostication, and treatment directed specifically at improving consciousness and cognitive recovery. In 2019, the Neurocritical Care Society (NCS) launched the Curing Coma Campaign in order to address the "grand challenge" of improving the management of patients with coma and decreased consciousness. One of the first steps was to bring together a Scientific Advisory Council including coma scientists, neurointensivists, neurorehabilitationists, and implementation experts in order to address the current scientific landscape and begin to develop a framework on how to move forward. This manuscript describes the proceedings of the first Curing Coma Campaign Scientific Advisory Council meeting which occurred in conjunction with the NCS Annual Meeting in October 2019 in Vancouver. Specifically, three major pillars were identified which should be considered: endotyping of coma and disorders of consciousness, biomarkers, and proof-of-concept clinical trials. Each is summarized with regard to current approach, benefits to the patient, family, and clinicians, and next steps. Integration of these three pillars will be essential to the success of the Curing Coma Campaign as will expanding the "curing coma community" to ensure broad participation of clinicians, scientists, and patient advocates with the goal of identifying and implementing treatments to fundamentally improve the outcome of patients.


Assuntos
Transtornos da Consciência/terapia , Cuidados Críticos , Ciência da Implementação , Reabilitação Neurológica , Neurologia , Comitês Consultivos , Biomarcadores , Ensaios Clínicos como Assunto , Coma/classificação , Coma/fisiopatologia , Coma/terapia , Transtornos da Consciência/classificação , Transtornos da Consciência/fisiopatologia , Humanos , Estudo de Prova de Conceito , Participação dos Interessados
18.
JAMA Neurol ; 77(4): 489-499, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886870

RESUMO

Importance: Advances in treatment of traumatic brain injury are hindered by the inability to monitor pathological mechanisms in individual patients for targeted neuroprotective treatment. Spreading depolarizations, a mechanism of lesion development in animal models, are a novel candidate for clinical monitoring in patients with brain trauma who need surgery. Objective: To test the null hypothesis that spreading depolarizations are not associated with worse neurologic outcomes. Design, Setting, and Participants: This prospective, observational, multicenter cohort study was conducted from February 2009 to August 2013 in 5 level 1 trauma centers. Consecutive patients who required neurological surgery for treatment of acute brain trauma and for whom research consent could be obtained were enrolled; participants were excluded because of technical problems in data quality, patient withdrawal, or loss to follow-up. Primary statistical analysis took place from April to December 2018. Evaluators of outcome assessments were blinded to other measures. Interventions: A 6-contact electrode strip was placed on the brain surface during surgery for continuous electrocorticography during intensive care. Main Outcomes and Measures: Electrocorticography was scored for depolarizations, following international consensus procedures. Six-month outcomes were assessed by the Glasgow Outcome Scale-Extended score. Results: A total of 157 patients were initially enrolled; 19 were subsequently excluded. The 138 remaining patients (104 men [75%]; median [interquartile range] age, 45 [29-64] years) underwent a median (interquartile range) of 75.5 (42.2-117.1) hours of electrocorticography. A total of 2837 spreading depolarizations occurred in 83 of 138 patients (60.1% incidence) who, compared with patients who did not have spreading depolarizations, had lower prehospital systolic blood pressure levels (mean [SD], 133 [31] mm Hg vs 146 [33] mm Hg; P = .03), more traumatic subarachnoid hemorrhage (depolarization incidences of 17 of 37 [46%], 18 of 32 [56%], 22 of 33 [67%], and 23 of 30 patients [77%] for Morris-Marshall Grades 0, 1, 2, and 3/4, respectively; P = .047), and worse radiographic pathology (in 38 of 73 patients [52%] and 42 of 60 patients [70%] for Rotterdam Scores 2-4 vs 5-6, respectively; P = .04). Of patients with depolarizations, 32 of 83 (39%) had only sporadic events that induced cortical spreading depression of spontaneous electrical activity, whereas 51 of 83 patients (61%) exhibited temporal clusters of depolarizations (≥3 in a 2-hour span). Nearly half of those with clusters (23 of 51 [45%]) also had depolarizations in an electrically silent area of the cortex (isoelectric spreading depolarization). Patients with clusters did not improve in motor neurologic examinations from presurgery to postelectrocorticography, while other patients did improve. In multivariate ordinal regression adjusting for baseline prognostic variables, the occurrence of depolarization clusters had an odds ratio of 2.29 (95% CI, 1.13-4.65; P = .02) for worse outcomes. Conclusions and Relevance: In this cohort study of patients with acute brain trauma, spreading depolarizations were predominant but heterogeneous and independently associated with poor neurologic recovery. Monitoring the occurrence of spreading depolarizations may identify patients most likely to benefit from targeted management strategies.


Assuntos
Potenciais de Ação/fisiologia , Lesões Encefálicas Traumáticas/diagnóstico , Encéfalo/fisiopatologia , Adulto , Idoso , Lesões Encefálicas Traumáticas/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
19.
Neurocrit Care ; 32(1): 306-310, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31338747

RESUMO

The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in the September of 2018 devoted a section to address the question, "What should a clinician do when spreading depolarizations are observed in a patient?" Discussants represented a wide range of expertise, including neurologists, neurointensivists, neuroradiologists, neurosurgeons, and pre-clinical neuroscientists, to provide both clinical and basic pathophysiology perspectives. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was formally collated, reviewed, and incorporated into the final document which was subsequently approved by all authors.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical , Acidente Vascular Cerebral/fisiopatologia , Hemorragia Subaracnóidea/fisiopatologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Eletrocorticografia , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Humanos , Ketamina/uso terapêutico , Avaliação de Resultados em Cuidados de Saúde , Medicina de Precisão , Acidente Vascular Cerebral/tratamento farmacológico , Hemorragia Subaracnóidea/tratamento farmacológico
20.
Neurocrit Care ; 32(1): 317-322, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31388871

RESUMO

Spreading depolarizations (SDs) are profound disruptions of cellular homeostasis that slowly propagate through gray matter and present an extraordinary metabolic challenge to brain tissue. Recent work has shown that SDs occur commonly in human patients in the neurointensive care setting and have established a compelling case for their importance in the pathophysiology of acute brain injury. The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in September of 2018 included a discussion session focused on the question of "Which SDs are deleterious to brain tissue?" iCSD is attended by investigators studying various animal species including invertebrates, in vivo and in vitro preparations, diseases of acute brain injury and migraine, computational modeling, and clinical brain injury, among other topics. The discussion included general agreement on many key issues, but also revealed divergent views on some topics that are relevant to the design of clinical interventions targeting SDs. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was then formally collated, reviewed and incorporated into the final document. It is hoped that this report will stimulate collection of data that are needed to develop a more nuanced understanding of SD in different pathophysiological states, as the field continues to move toward effective clinical interventions.


Assuntos
Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Animais , Eletroencefalografia , Humanos , Enxaqueca com Aura/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...