Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729623

RESUMO

Cardiac myosin activation has been shown to be a viable approach for the treatment of heart failure with reduced ejection fraction. Here, we report the discovery of nelutroctiv (CK-136), a selective cardiac troponin activator intended for patients with cardiovascular conditions where cardiac contractility is reduced. Discovery of nelutroctiv began with a high-throughput screen that identified compound 1R, a muscle selective cardiac sarcomere activator devoid of phosphodiesterase-3 activity. Optimization of druglike properties for 1R led to the replacement of the sulfonamide and aniline substituents which resulted in improved pharmacokinetic (PK) profiles and a reduced potential for human drug-drug interactions. In vivo echocardiography assessment of the optimized leads showed concentration dependent increases in fractional shortening and an improved pharmacodynamic window compared to myosin activator CK-138. Overall, nelutroctiv was found to possess the desired selectivity, a favorable pharmacodynamic window relative to myosin activators, and a preclinical PK profile to support clinical development.

2.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
3.
J Med Chem ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451215

RESUMO

Novel cardiac troponin activators were identified using a high throughput cardiac myofibril ATPase assay and confirmed using a series of biochemical and biophysical assays. HTS hit 2 increased rat cardiomyocyte fractional shortening without increasing intracellular calcium concentrations, and the biological target of 1 and 2 was determined to be the cardiac thin filament. Subsequent optimization to increase solubility and remove PDE-3 inhibition led to the discovery of CK-963 and enabled pharmacological evaluation of cardiac troponin activation without the competing effects of PDE-3 inhibition. Rat echocardiography studies using CK-963 demonstrated concentration-dependent increases in cardiac fractional shortening up to 95%. Isothermal calorimetry studies confirmed a direct interaction between CK-963 and a cardiac troponin chimera with a dissociation constant of 11.5 ± 3.2 µM. These results provide evidence that direct activation of cardiac troponin without the confounding effects of PDE-3 inhibition may provide benefit for patients with cardiovascular conditions where contractility is reduced.

4.
Stem Cell Reports ; 18(1): 220-236, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525964

RESUMO

Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na+ channel activities, and contractile dysfunction. These phenotypes establish a dual mechanism of poison peptide effect and haploinsufficiency that collectively contribute to DCM pathogenesis. However, TTNtv cellular defects did not interfere with the function of the core contractile machinery, the actin-myosin-troponin-Ca2+ complex, and preserved the therapeutic mechanism of sarcomere modulators. Treatment of TTNtv cardiac micro-tissues with investigational sarcomere modulators augmented contractility and resulted in sustained transcriptomic changes that promote reversal of DCM disease signatures. Together, our findings elucidate the underlying pathogenic mechanisms of A-band TTNtv-induced DCM and demonstrate the validity of sarcomere modulators as potential therapeutics.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos/patologia , Sarcômeros , Células-Tronco Pluripotentes Induzidas/patologia , Conectina/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Contração Miocárdica
5.
JACC Basic Transl Sci ; 7(10): 1021-1037, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337919

RESUMO

Modulation of sarcomere contractility represents a new therapeutic opportunity for the treatment of heart failure by directly targeting the thick and thin filament proteins of the sarcomere to increase cardiac muscle contraction. This study compared the effect of 2 small molecules (M and T) that selectively alter myosin thick filament (M) or troponin thin filament (T) activity on overall cardiac muscle mechanics. This study revealed key differences related to the mechanism utilized by M and T to increase contractile force generation and suggests that targeting different proteins within the sarcomere may result in differentiating therapeutic profiles.

6.
Biochemistry ; 61(8): 741-748, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35349258

RESUMO

Cardiac troponin is a regulatory protein complex located on the sarcomere that regulates the engagement of myosin on actin filaments. Low-molecular weight modulators of troponin that bind allosterically with the calcium ion have the potential to improve cardiac contractility in patients with reduced cardiac function. Here we propose an approach to the rational design of troponin modulators through the combined use of solution nuclear magnetic resonance and isothermal titration calorimetry methods. In contrast to traditional approaches limited to calcium and activator-bound troponin structures, here we analyzed the structural and thermodynamic impact of an activator in the context of the troponin functional cycle. This led us to propose a rationale for developing an efficacious troponin activator.


Assuntos
Cálcio , Miocárdio , Actinas/metabolismo , Cálcio/metabolismo , Humanos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Termodinâmica , Tropomiosina/metabolismo , Troponina/química
7.
Circ Heart Fail ; 15(3): e009195, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743528

RESUMO

BACKGROUND: Current heart failure therapies unload the failing heart without targeting the underlying problem of reduced cardiac contractility. Traditional inotropes (ie, calcitropes) stimulate contractility via energetically costly augmentation of calcium cycling and worsen patient survival. A new class of agents-myotropes-activates the sarcomere directly, independent of calcium. We hypothesize that a novel myotrope TA1 increases contractility without the deleterious myocardial energetic impact of a calcitrope dobutamine. METHODS: We determined the effect of TA1 in bovine cardiac myofibrils and human cardiac microtissues, ex vivo in mouse cardiac fibers and in vivo in anesthetized normal rats. Effects of increasing concentrations of TA1 or dobutamine on contractile function, phosphocreatine and ATP concentrations, and ATP production were assessed by 31P nuclear magnetic resonance spectroscopy on isolated perfused rat hearts. RESULTS: TA1 increased the rate of myosin ATPase activity in isolated bovine myofibrils and calcium sensitivity in intact mouse papillary fibers. Contractility increased dose dependently in human cardiac microtissues and in vivo in rats as assessed by echocardiography. In isolated rat hearts, TA1 and dobutamine similarly increased the rate-pressure product. Dobutamine increased both developed pressure and heart rate accompanied by decreased phosphocreatine-to-ATP ratio and decreased free energy of ATP hydrolysis (ΔG~ATP) and elevated left ventricular end diastolic pressure. In contrast, the TA1 increased developed pressure without any effect on heart rate, left ventricular end diastolic pressure, phosphocreatine/ATP ratio, or ΔG~ATP. CONCLUSIONS: Novel myotrope TA1 increased myocardial contractility by sensitizing the sarcomere to calcium without impairing diastolic function or depleting the cardiac energy reserve. Since energetic depletion negatively correlates with long-term survival, myotropes may represent a superior alternative to traditional inotropes in heart failure management.


Assuntos
Dobutamina , Insuficiência Cardíaca , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Dobutamina/farmacologia , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Fosfocreatina/metabolismo , Ratos , Troponina/metabolismo
8.
J Med Chem ; 64(19): 14142-14152, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34606259

RESUMO

Hypercontractility of the cardiac sarcomere may be essential for the underlying pathological hypertrophy and fibrosis in genetic hypertrophic cardiomyopathies. Aficamten (CK-274) is a novel cardiac myosin inhibitor that was discovered from the optimization of indoline compound 1. The important advancement of the optimization was discovery of an Indane analogue (12) with a less restrictive structure-activity relationship that allowed for the rapid improvement of drug-like properties. Aficamten was designed to provide a predicted human half-life (t1/2) appropriate for once a day (qd) dosing, to reach steady state within two weeks, to have no substantial cytochrome P450 induction or inhibition, and to have a wide therapeutic window in vivo with a clear pharmacokinetic/pharmacodynamic relationship. In a phase I clinical trial, aficamten demonstrated a human t1/2 similar to predictions and was able to reach steady state concentration within the desired two-week window.


Assuntos
Miosinas Cardíacas/efeitos dos fármacos , Cardiomiopatia Hipertrófica/tratamento farmacológico , Descoberta de Drogas , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
9.
J Med Chem ; 64(20): 14930-14941, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34636234

RESUMO

The discovery of reldesemtiv, a second-generation fast skeletal muscle troponin activator (FSTA) that increases force production at submaximal stimulation frequencies, is reported. Property-based optimization of high throughput screening hit 1 led to compounds with improved free exposure and in vivo muscle activation potency compared to the first-generation FSTA, tirasemtiv. Reldesemtiv demonstrated increased muscle force generation in a phase 1 clinical trial and is currently being evaluated in clinical trials for the treatment of amyotrophic lateral sclerosis.


Assuntos
Descoberta de Drogas , Músculo Esquelético/efeitos dos fármacos , Troponina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Relação Estrutura-Atividade
10.
J Med Chem ; 64(6): 3026-3034, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33703886

RESUMO

Troponin regulates the calcium-mediated activation of skeletal muscle. Muscle weakness in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy occurs from diminished neuromuscular output. The first direct fast skeletal troponin activator, tirasemtiv, amplifies the response of muscle to neuromuscular input. Tirasemtiv binds selectively and strongly to fast skeletal troponin, slowing the rate of calcium release and sensitizing muscle to calcium. We report the solution NMR structure of tirasemtiv bound to a fast skeletal troponin C-troponin I chimera. The structure reveals that tirasemtiv binds in a hydrophobic pocket between the regulatory domain of troponin C and the switch region of troponin I, which overlaps with that of Anapoe in the X-ray structure of skeletal troponin. Multiple interactions stabilize the troponin C-troponin I interface, increase the affinity of troponin C for the switch region of fast skeletal troponin I, and drive the equilibrium toward the active state.


Assuntos
Imidazóis/farmacologia , Músculo Esquelético/efeitos dos fármacos , Pirazinas/farmacologia , Troponina C/metabolismo , Troponina I/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Imidazóis/química , Simulação de Acoplamento Molecular , Músculo Esquelético/fisiologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Pirazinas/química , Troponina C/química , Troponina I/química
11.
ACS Med Chem Lett ; 9(4): 354-358, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29670700

RESUMO

The identification and optimization of the first activators of fast skeletal muscle are reported. Compound 1 was identified from high-throughput screening (HTS) and subsequently found to improve muscle function via interaction with the troponin complex. Optimization of 1 for potency, metabolic stability, and physical properties led to the discovery of tirasemtiv (25), which has been extensively characterized in clinical trials for the treatment of amyotrophic lateral sclerosis.

12.
Head Neck ; 40(1): 137-143, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29131439

RESUMO

BACKGROUND: This functional usability study assessed ease of use, fit, comfort, and potential clinical benefits of advanced pneumatic compression treatment of cancer-related head and neck lymphedema. METHODS: Patient-reported comfort and other treatment aspects were evaluated and multiple face and neck measurements were obtained on 44 patients with head and neck lymphedema before and after 1 treatment session to assess usability and treatment-related lymphedema changes. RESULTS: A majority of the patients (82%) reported the treatment was comfortable; most patients (61%) reported feeling better after treatment, and 93% reported that they would be likely to use this therapy at home. One treatment produced overall small but highly statistically significant reductions in composite metrics (mean ± SD) of the face (82.5 ± 4.3 cm vs 80.9 ± 4.1 cm; P < .001) and neck (120.4 ± 12.2 cm vs 119.2 ± 12.1 cm; P < .001) with no adverse events. CONCLUSION: Results found the treatment to be safe, easy to use, and well tolerated while demonstrating edema reduction after a single initial treatment.


Assuntos
Neoplasias de Cabeça e Pescoço/cirurgia , Dispositivos de Compressão Pneumática Intermitente/estatística & dados numéricos , Linfedema/terapia , Esvaziamento Cervical/efeitos adversos , Idoso , Estudos de Viabilidade , Feminino , Seguimentos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Linfedema/etiologia , Masculino , Massagem/métodos , Pessoa de Meia-Idade , Esvaziamento Cervical/métodos , Medidas de Resultados Relatados pelo Paciente , Satisfação do Paciente/estatística & dados numéricos , Cuidados Pós-Operatórios/métodos , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/terapia , Estudos Prospectivos , Recuperação de Função Fisiológica , Medição de Risco , Resultado do Tratamento
13.
Reprod Toxicol ; 74: 174-180, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28970133

RESUMO

Genistein is a phytoestrogen found in soy and soy-based products. Previously, we found that genistein adversely affected estradiol levels and follicle growth in vitro. Proper hormone production and follicle growth are key regulators of normal fertility. Therefore, we hypothesized that genistein adversely affects female fertility and pregnancy outcomes. To test this hypothesis, we dosed sexually mature female CD-1 mice (35days) with 0, 300, 500, or 1000ppm genistein for 30, 60, 150, and 240days. At the end of the dosing periods, we measured mating rate, pregnancy rate, fertility rate, gestation time, parturition time, pup mortality, litter size, average pup weight, and estradiol and progesterone levels. We found that chronic, preconception exposure to genistein affects gestation time, parturition time, litter size, pup weight, and pup mortality. Additionally, genistein exposure for 240days appears to have a protective effect on fertility rate, but does not affect hormone levels in vivo.


Assuntos
Genisteína/toxicidade , Fitoestrógenos/toxicidade , Reprodução/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Dieta , Estradiol/sangue , Feminino , Fertilidade/efeitos dos fármacos , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Gravidez , Progesterona/sangue , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento
14.
Nat Commun ; 8(1): 190, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28775348

RESUMO

Omecamtiv mecarbil is a selective, small-molecule activator of cardiac myosin that is being developed as a potential treatment for heart failure with reduced ejection fraction. Here we determine the crystal structure of cardiac myosin in the pre-powerstroke state, the most relevant state suggested by kinetic studies, both with (2.45 Å) and without (3.10 Å) omecamtiv mecarbil bound. Omecamtiv mecarbil does not change the motor mechanism nor does it influence myosin structure. Instead, omecamtiv mecarbil binds to an allosteric site that stabilizes the lever arm in a primed position resulting in accumulation of cardiac myosin in the primed state prior to onset of cardiac contraction, thus increasing the number of heads that can bind to the actin filament and undergo a powerstroke once the cardiac cycle starts. The mechanism of action of omecamtiv mecarbil also provides insights into uncovering how force is generated by molecular motors.Omecamtiv mecarbil (OM) is a cardiac myosin activator that is currently in clinical trials for heart failure treatment. Here, the authors give insights into its mode of action and present the crystal structure of OM bound to bovine cardiac myosin, which shows that OM stabilizes the pre-powerstroke state of myosin.


Assuntos
Miosinas Cardíacas/química , Ureia/análogos & derivados , Animais , Sítios de Ligação , Miosinas Cardíacas/efeitos dos fármacos , Bovinos , Cristalização , Conformação Proteica , Ureia/farmacologia
15.
EMBO Mol Med ; 9(4): 531-544, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28270449

RESUMO

Growth and differentiation factor (GDF) 11 is a member of the transforming growth factor ß superfamily recently identified as a potential therapeutic for age-related cardiac and skeletal muscle decrements, despite high homology to myostatin (Mstn), a potent negative regulator of muscle mass. Though several reports have refuted these data, the in vivo effects of GDF11 on skeletal muscle mass have not been addressed. Using in vitro myoblast culture assays, we first demonstrate that GDF11 and Mstn have similar activities/potencies on activating p-SMAD2/3 and induce comparable levels of differentiated myotube atrophy. We further demonstrate that adeno-associated virus-mediated systemic overexpression of GDF11 in C57BL/6 mice results in substantial atrophy of skeletal and cardiac muscle, inducing a cachexic phenotype not seen in mice expressing similar levels of Mstn. Greater cardiac expression of Tgfbr1 may explain this GDF11-specific cardiac phenotype. These data indicate that bioactive GDF11 at supraphysiological levels cause wasting of both skeletal and cardiac muscle. Rather than a therapeutic agent, GDF11 should be viewed as a potential deleterious biomarker in muscle wasting diseases.


Assuntos
Atrofia , Proteínas Morfogenéticas Ósseas/biossíntese , Fatores de Diferenciação de Crescimento/biossíntese , Músculo Estriado/patologia , Animais , Dependovirus/genética , Expressão Gênica , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efeitos dos fármacos , Miostatina , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Transdução Genética
16.
Physiother Theory Pract ; 33(2): 124-130, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28095102

RESUMO

Hip extension strengthening exercises which maximize gluteus maximus contributions and minimize hamstring influences may be beneficial for persons with hip pain. This study's aim was to compare muscle activation of the gluteus maximus and hamstrings from healthy subjects during a supine resisted hip extension exercise versus supine unilateral bridge to neutral. Surface electromyographic (EMG) signals were obtained from the right gluteus maximus and hamstrings in 13 healthy male and 13 healthy female subjects. Maximum voluntary isometric contractions (MVICs) were collected to normalize data and permit meaningful comparisons across muscles. Peak median activation of the gluteus maximus was 33.8% MVIC for the bridge and 34.7% MVIC for the hip extension exercise, whereas peak median recruitment for hamstrings was 28.4% MVIC for the bridge and 51% MVIC for the hip extension exercise. The gluteus maximus to hamstrings ratio was compared between the two exercises using the Wilcoxon signed-ranks test (α = 0.05). The ratio (p = 0.014) was greater in the supine unilateral bridge (median = 111.3%) than supine hip extension exercise (median = 59.2%), suggesting a reduction of hamstring recruitment in the unilateral bridge to neutral compared to the supine resisted hip extension exercise. The supine hip extension exercise demonstrated higher EMG activity of hamstrings in comparison with supine unilateral bridge and, therefore, may be less appropriate in subjects who need to increase gluteus maximus activation.


Assuntos
Eletromiografia , Terapia por Exercício/métodos , Músculos Isquiossurais/fisiologia , Articulação do Quadril/fisiologia , Contração Muscular , Força Muscular , Posicionamento do Paciente/métodos , Decúbito Dorsal , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
17.
J Physiol ; 595(5): 1657-1670, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869319

RESUMO

KEY POINTS: We report that the small molecule CK-2066260 selectively slows the off-rate of Ca2+ from fast skeletal muscle troponin, leading to increased myofibrillar Ca2+ sensitivity in fast skeletal muscle. Rodents dosed with CK-2066260 show increased hindlimb muscle force and power in response to submaximal rates of nerve stimulation in situ. CK-2066260 has no effect on free cytosolic [Ca2+ ] during contractions of isolated muscle fibres. We conclude that fast skeletal muscle troponin sensitizers constitute a potential therapy to address an unmet need of improving muscle function in conditions of weakness and premature muscle fatigue. ABSTRACT: Skeletal muscle dysfunction occurs in many diseases and can lead to muscle weakness and premature muscle fatigue. Here we show that the fast skeletal troponin activator, CK-2066260, counteracts muscle weakness by increasing troponin Ca2+ affinity, thereby increasing myofibrillar Ca2+ sensitivity. Exposure to CK-2066260 resulted in a concentration-dependent increase in the Ca2+ sensitivity of ATPase activity in isolated myofibrils and reconstituted hybrid sarcomeres containing fast skeletal muscle troponin C. Stopped-flow experiments revealed a ∼2.7-fold decrease in the Ca2+ off-rate of isolated troponin complexes in the presence of CK-2066260 (6 vs. 17 s-1 under control conditions). Isolated mouse flexor digitorum brevis fibres showed a rapidly developing, reversible and concentration-dependent force increase at submaximal stimulation frequencies. This force increase was not accompanied by any changes in the free cytosolic [Ca2+ ] or its kinetics. CK-2066260 induced a slowing of relaxation, which was markedly larger at 26°C than at 31°C and could be linked to the decreased Ca2+ off-rate of troponin C. Rats dosed with CK-2066260 showed increased hindlimb isometric and isokinetic force in response to submaximal rates of nerve stimulation in situ producing significantly higher absolute forces at low isokinetic velocities, whereas there was no difference in force at the highest velocities. Overall muscle power was increased and the findings are consistent with a lack of effect on crossbridge kinetics. In conclusion, CK-2066260 acts as a fast skeletal troponin activator that may be used to increase muscle force and power in conditions of muscle weakness.


Assuntos
Cálcio/fisiologia , Imidazóis/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Pirazinas/farmacologia , Adenosina Trifosfatases/fisiologia , Animais , Bovinos , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiologia , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/fisiologia , Miofibrilas/fisiologia , Coelhos , Ratos Sprague-Dawley , Troponina C/fisiologia
18.
Proc Natl Acad Sci U S A ; 113(47): E7448-E7455, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27815532

RESUMO

Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the "recovery stroke" transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents.


Assuntos
Bibliotecas de Moléculas Pequenas/farmacologia , Miosinas de Músculo Liso/antagonistas & inibidores , Miosinas de Músculo Liso/química , Actinas/metabolismo , Sítio Alostérico , Animais , Cristalografia por Raios X , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Relaxamento Muscular , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ligação Proteica/efeitos dos fármacos , Ratos
19.
Clin Exp Metastasis ; 33(5): 475-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27209469

RESUMO

Breast cancer (BC) is the leading cancer in women worldwide. Metastasis occurs in stage IV BC with bone and lung being common metastatic sites. Here we evaluate the effects of the aromatase inhibitor letrozole on BC micro-metastatic tumor growth in bone and lung metastasis in intact and ovariectomized (OVX) mice with murine estrogen receptor negative (ER-) BC cells inoculated in tibia. Forty-eight BALB/c mice were randomly assigned to one of four groups: OVX, OVX + Letrozole, Intact, and Intact + Letrozole, and injected with 4T1 cells intra-tibially. Letrozole was subcutaneously injected daily for 23 days at a dose of 1.75 µg/g body weight. Tumor progression was monitored by bioluminescence imaging (BLI). Following necropsy, inoculated tibiae were scanned via µCT and bone response to tumor was scored from 0 (no ectopic mineralization/osteolysis) to 5 (extensive ectopic mineralization/osteolysis). OVX mice had higher tibial pathology scores indicative of more extensive bone destruction than intact mice, irrespective of letrozole treatment. Letrozole decreased serum estradiol levels and reduced lung surface tumor numbers in intact animals. Furthermore, mice receiving letrozole had significantly fewer tumor colonies and fewer proliferative cells in the lung than OVX and intact controls based on H&E and Ki-67 staining, respectively. In conclusion, BC-inoculated OVX animals had higher tibia pathology scores than BC-inoculated intact animals and letrozole reduced BC metastases to lungs. These findings suggest that, by lowering systemic estrogen level and/or by interacting with the host organ, the aromatase inhibitor letrozole has the potential to reduce ER- BC metastasis to lung.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Micrometástase de Neoplasia/tratamento farmacológico , Nitrilas/administração & dosagem , Triazóis/administração & dosagem , Animais , Inibidores da Aromatase/administração & dosagem , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Letrozol , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Micrometástase de Neoplasia/patologia
20.
Mol Nutr Food Res ; 60(2): 369-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26555669

RESUMO

SCOPE: We studied the impact of dietary supplementation with licorice root components on diet-induced obesity, fat accumulation, and hepatic steatosis in ovariectomized C57BL/6 mice as a menopause model. MATERIALS AND METHODS: We evaluated the molecular and physiological effects of dietary licorice root administered to ovariectomized C57BL/6 mice as root powder (LRP), extracts (LRE), or isolated isoliquiritigenin (ILQ) on reproductive (uterus and mammary gland) and nonreproductive tissues important in regulating metabolism (liver, perigonadal, perirenal, mesenteric, and subcutaneous fat). Quantitative outcome measures including body weight, fat distribution (magnetic resonance imaging), food consumption, bone density and weight (Dual-energy X-ray absorptiometry), and gene expression were assessed by the degree of restoration to the preovariectomized health state. We characterized histological (H&E and oil red O staining) and molecular properties (expression of certain disease markers) of these tissues, and correlated these with metabolic phenotype as well as blood levels of bioactives. CONCLUSION: Although LRE and ILQ provided some benefit, LRP was the most effective in reducing body weight gain, overall fat deposition, liver steatosis, and expression of hepatic lipid synthesis genes following ovariectomy. Our data demonstrate that licorice root provided improvement of multiple metabolic parameters under conditions of low estrogen and high-fat diets without stimulating reproductive tissues.


Assuntos
Suplementos Nutricionais , Glycyrrhiza/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Absorciometria de Fóton , Animais , Distribuição da Gordura Corporal , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Flavanonas/farmacologia , Camundongos Endogâmicos C57BL , Ovariectomia , Raízes de Plantas/química , Útero/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...