Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Neuropharmacol ; 21(2): 284-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35410608

RESUMO

Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.


Assuntos
Canabidiol , Inflamassomos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Doenças Neuroinflamatórias , Microglia/metabolismo
2.
Genes Brain Behav ; 20(8): e12775, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672092

RESUMO

The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.


Assuntos
Receptor CB1 de Canabinoide/metabolismo , Reflexo de Sobressalto/genética , Estimulação Acústica , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Córtex Piriforme/citologia , Córtex Piriforme/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sexo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34303744

RESUMO

Post-traumatic stress disorder (PTSD) is a chronic disease caused by traumatic incidents. Numerous studies have revealed grey matter volume differences in affected individuals. The nature of the disease renders it difficult to distinguish between a priori versus a posteriori changes. To overcome this difficulty, we studied the consequences of a traumatic event on brain morphology in mice before and 4 weeks after exposure to brief foot shocks (or sham treatment), and correlated morphology with symptoms of hyperarousal. In the latter context, we assessed hyperarousal upon confrontation with acoustic, visual, or composite (acoustic/visual/tactile) threats and integrated the individual readouts into a single Hyperarousal Score using logistic regression analysis. MRI scans with subsequent whole-brain deformation-based morphometry (DBM) analysis revealed a volume decrease of the dorsal hippocampus and an increase of the reticular nucleus in shocked mice when compared to non-shocked controls. Using the Hyperarousal Score as regressor for the post-exposure MRI measurement, we observed negative correlations with several brain structures including the dorsal hippocampus. If the development of changes with respect to the basal MRI was considered, reduction in globus pallidus volume reflected hyperarousal severity. Our findings demonstrate that a brief traumatic incident can cause volume changes in defined brain structures and suggest the globus pallidus as an important hub for the control of fear responses to threatening stimuli of different sensory modalities.


Assuntos
Nível de Alerta/fisiologia , Encéfalo/fisiopatologia , Substância Cinzenta/fisiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Globo Pálido , Hipocampo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31054943

RESUMO

Long-term single housing increases aggressive behavior in mice, a condition named isolation-induced aggression or territorial aggression, which can be attenuated by anxiolytic, antidepressant, and antipsychotic drugs. Preclinical and clinical findings indicate that cannabidiol (CBD), a non-psychotomimetic compound from Cannabis sativa, has anxiolytic, antidepressant, and antipsychotic properties. Few studies, however, have investigated the effects of CBD on aggressive behaviors. Here, we investigated whether CBD (5, 15, 30, and 60 mg/kg; i.p.) could attenuate social isolation-induced aggressive behavior in the resident-intruder test. Male Swiss mice (7-8 weeks) were single-housed for 10 days (resident mice) to induce aggressive behaviors, while conspecific mice of same sex and age (intruder mice) were group-housed. During the test, the intruder was placed into the resident's home-cage and aggressive behaviors initiated by the resident, including the latency for the first attack, number of attacks, and total duration of aggressive encounters, were recorded. The involvement of 5-HT1A and CB1 receptors (CB1R) in the effects of CBD was also investigated. All tested CBD doses induced anti-aggressive effects, indicated by a decrease in the number of attacks. CBD, at intermediary doses (15 and 30 mg/kg), also increased latency to attack the intruder and decreased the duration of aggressive encounters. No CBD dose interfered with locomotor behavior. CBD anti-aggressive effects were attenuated by the 5-HT1A receptor antagonist WAY100635 (0.3 mg/kg) and the CB1 antagonist AM251 (1 mg/kg), suggesting that CBD decreases social isolation-induced aggressive behaviors through a mechanism associated with the activation of 5-HT1A and CB1 receptors. Also, CBD decreased c-Fos protein expression, a neuronal activity marker, in the lateral periaqueductal gray (lPAG) in social-isolated mice exposed to the resident-intruder test, indicating a potential involvement of this brain region in the drug effects. Taken together, our findings suggest that CBD may be therapeutically useful to treat aggressive behaviors that are usually associated with psychiatric disorders.


Assuntos
Agressão/efeitos dos fármacos , Agressão/fisiologia , Canabidiol/antagonistas & inibidores , Canabidiol/farmacologia , Receptor CB1 de Canabinoide/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Isolamento Social , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Relação Dose-Resposta a Droga , Abrigo para Animais , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
5.
J Psychopharmacol ; 33(5): 606-614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30789299

RESUMO

BACKGROUND: The dorsal hippocampus has a central role in modulating cardiovascular responses and behavioral adaptation to stress. The dorsal hippocampus also plays a key role in stress-associated mental disorders. The endocannabinoid system is widely expressed in the dorsal hippocampus and modulates defensive behaviors under stressful conditions. The endocannabinoid anandamide activates cannabinoid type 1 receptors and is metabolized by the fatty acid amide hydrolase enzyme. AIMS: We sought to verify whether cannabinoid type 1 receptors modulate stress-induced cardiovascular changes, and if pharmacological fatty acid amide hydrolase inhibition in the dorsal hippocampus would prevent the cardiovascular responses and the delayed anxiogenic-like behavior evoked by restraint stress in rats via cannabinoid type 1 receptors. METHODS: Independent groups received intra-dorsal-hippocampal injections of N-(piperidin-1yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-hpyrazole-3-carboxamide (AM251; cannabinoid type 1 receptor antagonist/inverse agonist, 10-300 pmol) and/or cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597; fatty acid amide hydrolase inhibitor, 10 pmol) before the restraint stress session. Cardiovascular response during restraint stress or later behavioral parameters were evaluated. RESULTS: Acute restraint stress altered the cardiovascular response, characterized by increased heart rate and mean arterial pressure, as well as decreased tail cutaneous temperature. It also induced a delayed anxiogenic-like effect, evidenced by reduced open arm exploration in the elevated plus maze 24 h after stress. AM251 exacerbated the stress-induced cardiovascular responses after injection into the dorsal hippocampus. In contrast, local injection of URB597 prevented the cardiovascular response and the delayed (24 h) behavioral consequences of restraint stress, effects attenuated by pretreatment with AM251. CONCLUSION: Our data corroborate previous results indicating that the hippocampal endocannabinoid system modulates the outcome of stress exposure and suggest that this could involve modulation of the cardiovascular response during stress exposure.


Assuntos
Ansiedade , Pressão Arterial/fisiologia , Comportamento Animal/fisiologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/fisiologia , Frequência Cardíaca/fisiologia , Hipocampo/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Estresse Psicológico , Amidoidrolases/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/etiologia , Ansiedade/metabolismo , Ácidos Araquidônicos/farmacologia , Pressão Arterial/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Carbamatos/farmacologia , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Restrição Física/efeitos adversos , Temperatura Cutânea/efeitos dos fármacos , Temperatura Cutânea/fisiologia , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA