Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666991

RESUMO

Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland. In parallel, we examined the impact of greywater-treated irrigation on soil, including the occurrence of emerging micropollutants and the taxonomic and ARG compositions of microbial communities. Most ARGs in raw greywater are removed efficiently during the winter season, while some ARGs in the effluents increase in summer. SmartChip™ qPCR revealed the presence of ARGs, such as tetracycline and beta-lactam resistance genes, in both raw and treated greywater, but most abundantly in the filter bed. It also showed that aminoglycoside and vancomycin gene abundances significantly increased after treatment. In the irrigated soil, the type of water (potable or treated greywater) had no specific impact on the total bacterial abundance (16S rRNA gene). No overlapping ARGs were found between treated greywater and greywater-irrigated soil. This study indicates ARG abundance and richness increased after treatment, possibly due to the concentration effects of the filter beds.

2.
Microbiol Spectr ; 12(3): e0289723, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38294230

RESUMO

The rise in the frequency of antibiotic resistance has made bacterial infections, specifically Pseudomonas aeruginosa, a cause for greater concern. Phage therapy is a promising solution that uses naturally isolated phages to treat bacterial infections. Ecological limitations, which stipulate a discrete host range and the inevitable evolution of resistance, may be overcome through a better understanding of phage biology and the utilization of engineered phages. In this study, we developed a synthetic biology approach to construct tailed phages that naturally target clinically relevant strains of Pseudomonas aeruginosa. As proof of concept, we successfully cloned and assembled the JG024 and DMS3 phage genomes in yeast using transformation-associated recombination cloning and rebooted these two phage genomes in two different strains of P. aeruginosa. We identified factors that affected phage reboot efficiency like the phage species or the presence of antiviral defense systems in the bacterial strain. We have successfully extended this method to two other phage species and observed that the method enables the reboot of phages that are naturally unable to infect the strain used for reboot. This research represents a critical step toward the construction of clinically relevant, engineered P. aeruginosa phages.IMPORTANCEPseudomonas aeruginosa is a bacterium responsible for severe infections and a common major complication in cystic fibrosis. The use of antibiotics to treat bacterial infections has become increasingly difficult as antibiotic resistance has become more prevalent. Phage therapy is an alternative solution that is already being used in some European countries, but its use is limited by the narrow host range due to the phage receptor specificity, the presence of antiviral defense systems in the bacterial strain, and the possible emergence of phage resistance. In this study, we demonstrate the use of a synthetic biology approach to construct and reboot clinically relevant P. aeruginosa tailed phages. This method enables a significant expansion of possibilities through the construction of engineered phages for therapy applications.


Assuntos
Infecções Bacterianas , Bacteriófagos , Infecções por Pseudomonas , Fagos de Pseudomonas , Humanos , Pseudomonas aeruginosa , Fagos de Pseudomonas/genética , Biologia Sintética , Bacteriófagos/genética , Antivirais
3.
Microbiome ; 11(1): 131, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312147

RESUMO

BACKGROUND: Characterization of microbial activity is essential to the understanding of the basic biology of microbial communities, as the function of a microbiome is defined by its biochemically active ("viable") community members. Current sequence-based technologies can rarely differentiate microbial activity, due to their inability to distinguish live and dead sourced DNA. As a result, our understanding of microbial community structures and the potential mechanisms of transmission between humans and our surrounding environments remains incomplete. As a potential solution, 16S rRNA transcript-based amplicon sequencing (16S-RNA-seq) has been proposed as a reliable methodology to characterize the active components of a microbiome, but its efficacy has not been evaluated systematically. Here, we present our work to benchmark RNA-based amplicon sequencing for activity assessment in synthetic and environmentally sourced microbial communities. RESULTS: In synthetic mixtures of living and heat-killed Escherichia coli and Streptococcus sanguinis, 16S-RNA-seq successfully reconstructed the active compositions of the communities. However, in the realistic environmental samples, no significant compositional differences were observed in RNA ("actively transcribed - active") vs. DNA ("whole" communities) spiked with E. coli controls, suggesting that this methodology is not appropriate for activity assessment in complex communities. The results were slightly different when validated in environmental samples of similar origins (i.e., from Boston subway systems), where samples were differentiated both by environment type as well as by library type, though compositional dissimilarities between DNA and RNA samples remained low (Bray-Curtis distance median: 0.34-0.49). To improve the interpretation of 16S-RNA-seq results, we compared our results with previous studies and found that 16S-RNA-seq suggests taxon-wise viability trends (i.e., specific taxa are universally more or less likely to be viable compared to others) in samples of similar origins. CONCLUSIONS: This study provides a comprehensive evaluation of 16S-RNA-seq for viability assessment in synthetic and complex microbial communities. The results found that while 16S-RNA-seq was able to semi-quantify microbial viability in relatively simple communities, it only suggests a taxon-dependent "relative" viability in realistic communities.  Video Abstract.


Assuntos
Escherichia coli , Microbiota , Humanos , Escherichia coli/genética , RNA Ribossômico 16S/genética , Biblioteca Gênica , Temperatura Alta , Microbiota/genética
4.
Environ Sci Technol ; 57(20): 7645-7665, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37157132

RESUMO

Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This work presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs' role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the US Environmental Protection Agency's current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects.


Assuntos
COVID-19 , Desinfetantes , Humanos , Compostos de Amônio Quaternário/química , Pandemias , Antibacterianos
5.
Sci Total Environ ; 890: 164136, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37225100

RESUMO

Greywater often contains microorganisms carrying antimicrobial resistance genes (ARGs). Reuse of greywater thus potentially facilitates the enrichment and spread of multidrug resistance, posing a possible hazard for communities that use it. As water reuse becomes increasingly necessary, it is imperative to determine how greywater treatment impacts ARGs. In this study, we characterize ARG patterns in greywater microbial communities before and after treatment by a recirculating vertical flow constructed wetland (RVFCW). This greywater recycling method has been adopted by some small communities and households for greywater treatment; however, its ability to remove ARGs is unknown. We examined the taxonomic and ARG compositions of microbial communities in raw and treated greywater from five households using shotgun metagenomic sequencing. Total ARGs decreased in abundance and diversity in greywater treated by the RVFCW. In parallel, the microbial communities decreased in similarity in treated greywater. Potentially pathogenic bacteria associated with antimicrobial resistance and mobile genetic elements were detected in both raw and treated water, with a decreasing trend after treatment. This study indicates that RVFCW systems have the potential to mitigate antimicrobial resistance-related hazards when reusing treated greywater, but further measures need to be taken regarding persistent mobile ARGs and potential pathogens.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/genética , Metagenoma , Água , Genes Bacterianos
6.
Sci Total Environ ; 876: 162572, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36871720

RESUMO

Wastewater SARS-CoV-2 surveillance has been deployed since the beginning of the COVID-19 pandemic to monitor the dynamics in virus burden in local communities. Genomic surveillance of SARS-CoV-2 in wastewater, particularly efforts aimed at whole genome sequencing for variant tracking and identification, are still challenging due to low target concentration, complex microbial and chemical background, and lack of robust nucleic acid recovery experimental procedures. The intrinsic sample limitations are inherent to wastewater and are thus unavoidable. Here, we use a statistical approach that couples correlation analyses to a random forest-based machine learning algorithm to evaluate potentially important factors associated with wastewater SARS-CoV-2 whole genome amplicon sequencing outcomes, with a specific focus on the breadth of genome coverage. We collected 182 composite and grab wastewater samples from the Chicago area between November 2020 to October 2021. Samples were processed using a mixture of processing methods reflecting different homogenization intensities (HA + Zymo beads, HA + glass beads, and Nanotrap), and were sequenced using one of the two library preparation kits (the Illumina COVIDseq kit and the QIAseq DIRECT kit). Technical factors evaluated using statistical and machine learning approaches include sample types, certain sample intrinsic features, and processing and sequencing methods. The results suggested that sample processing methods could be a predominant factor affecting sequencing outcomes, and library preparation kits was considered a minor factor. A synthetic SARS-CoV-2 RNA spike-in experiment was performed to validate the impact from processing methods and suggested that the intensity of the processing methods could lead to different RNA fragmentation patterns, which could also explain the observed inconsistency between qPCR quantification and sequencing outcomes. Overall, extra attention should be paid to wastewater sample processing (i.e., concentration and homogenization) for sufficient and good quality SARS-CoV-2 RNA for downstream sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , RNA Viral , Águas Residuárias , Manejo de Espécimes
7.
Curr Opin Biotechnol ; 80: 102902, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812745

RESUMO

Antibiotics and disinfectants have saved millions of human lives and cured uncountable animal diseases, but their activity is not limited to the site of application. Downstream, these chemicals become micropollutants, contaminating water at trace levels, resulting in adverse impacts on soil microbial communities and threatening crop health and productivity in agricultural settings and perpetuating the spread of antimicrobial resistance. Especially as resource scarcity drives increased reuse of water and other waste streams, considerable attention is needed to characterize the fate of antibiotics and disinfectants and to prevent or mitigate environmental and public health impacts. In this review, we hope to provide an overview of why increasing concentrations of micropollutants such as antibiotics are concerning in the environment, how they can pose health risks for humans, and how they can be countered using bioremediation strategies.


Assuntos
Agricultura , Desinfetantes , Animais , Humanos , Solo , Antibacterianos
8.
Environ Res ; 216(Pt 4): 114802, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375502

RESUMO

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been recognized as a sustainable process for simultaneous removal of nitrogen and methane. The metabolisms of denitrifying anaerobic methanotrophs, including Candidatus Methanoperedens and Candidatus Methylomirabilis, have been well studied. However, potential roles of heterotrophs co-existing with these anaerobic methanotrophs are generally overlooked. In this study, we pulse-fed methane and nitrate into an anaerobic laboratory sequencing batch bioreactor and enriched a mixed culture with stable nitrate removal rate (NRR) of ∼28 mg NO3--N L-1 d-1. Microbial community analysis indicates abundant heterotrophs, e.g., Arenimonas (5.3%-18.9%) and Fimbriimonadales ATM1 (6.4%), were enriched together with denitrifying anaerobic methanotrophs Ca. Methanoperedens (10.8%-13.2%) and Ca. Methylomirabilis (27.4%-34.3%). The results of metagenomics and batch tests suggested that the denitrifying anaerobic methanotrophs were capable of generating methane-derived intermediates (i.e., formate and acetate), which were employed by non-methanotrophic heterotrophs for denitrification and biomass growth. These findings offer new insights into the roles of heterotrophs in n-DAMO mixed culture, which may help to optimize n-DAMO process for nitrogen removal from wastewater.


Assuntos
Desnitrificação , Metano , Nitrogênio/metabolismo , Nitratos , Anaerobiose , Reatores Biológicos , Oxirredução , Bactérias/metabolismo , Nitritos
9.
Microbiome ; 10(1): 206, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36457108

RESUMO

BACKGROUND: Effective surveillance of microbial communities in the healthcare environment is increasingly important in infection prevention. Metagenomics-based techniques are promising due to their untargeted nature but are currently challenged by several limitations: (1) they are not powerful enough to extract valid signals out of the background noise for low-biomass samples, (2) they do not distinguish between viable and nonviable organisms, and (3) they do not reveal the microbial load quantitatively. An additional practical challenge towards a robust pipeline is the inability to efficiently allocate sequencing resources a priori. Assessment of sequencing depth is generally practiced post hoc, if at all, for most microbiome studies, regardless of the sample type. This practice is inefficient at best, and at worst, poor sequencing depth jeopardizes the interpretation of study results. To address these challenges, we present a workflow for metagenomics-based environmental surveillance that is appropriate for low-biomass samples, distinguishes viability, is quantitative, and estimates sequencing resources. RESULTS: The workflow was developed using a representative microbiome sample, which was created by aggregating 120 surface swabs collected from a medical intensive care unit. Upon evaluating and optimizing techniques as well as developing new modules, we recommend best practices and introduce a well-structured workflow. We recommend adopting liquid-liquid extraction to improve DNA yield and only incorporating whole-cell filtration when the nonbacterial proportion is large. We suggest including propidium monoazide treatment coupled with internal standards and absolute abundance profiling for viability assessment and involving cultivation when demanding comprehensive profiling. We further recommend integrating internal standards for quantification and additionally qPCR when we expect poor taxonomic classification. We also introduce a machine learning-based model to predict required sequencing effort from accessible sample features. The model helps make full use of sequencing resources and achieve desired outcomes. Video Abstract CONCLUSIONS: This workflow will contribute to more accurate and robust environmental surveillance and infection prevention. Lessons gained from this study will also benefit the continuing development of methods in relevant fields.


Assuntos
Metagenômica , Microbiota , Fluxo de Trabalho , Monitoramento Ambiental , Microbiota/genética , Atenção à Saúde
10.
NPJ Biofilms Microbiomes ; 8(1): 72, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123373

RESUMO

Indoor surfaces are paradoxically presumed to be both colonized by pathogens, necessitating disinfection, and "microbial wastelands." In these resource-poor, dry environments, competition and decay are thought to be important drivers of microbial community composition. However, the relative contributions of these two processes have not been specifically evaluated. To bridge this knowledge gap, we used microcosms to evaluate whether interspecies interactions occur on surfaces. We combined transcriptomics and traditional microbiology techniques to investigate whether competition occurred between two clinically important pathogens, Acinetobacter baumannii and Klebsiella pneumoniae, and a probiotic cleaner containing a consortium of Bacillus species. Probiotic cleaning seeks to take advantage of ecological principles such as competitive exclusion, thus using benign microorganisms to inhibit viable pathogens, but there is limited evidence that competitive exclusion in fact occurs in environments of interest (i.e., indoor surfaces). Our results indicate that competition in this setting has a negligible impact on community composition but may influence the functions expressed by active organisms. Although Bacillus spp. remained viable on surfaces for an extended period of time after application, viable colony forming units (CFUs) of A. baumannii recovered following exposure to a chemical-based detergent with and without Bacillus spp. showed no statistical difference. Similarly, for K. pneumoniae, there were small statistical differences in CFUs between cleaning scenarios with or without Bacillus spp. in the chemical-based detergent. The transcriptome of A. baumannii with and without Bacillus spp. exposure shared a high degree of similarity in overall gene expression, but the transcriptome of K. pneumoniae differed in overall gene expression, including reduced response in genes related to antimicrobial resistance. Together, these results highlight the need to fully understand the underlying biological and ecological mechanisms for community assembly and function on indoor surfaces, as well as having practical implications for cleaning and disinfection strategies for infection prevention.


Assuntos
Anti-Infecciosos , Probióticos , Detergentes/farmacologia , Desinfecção/métodos , Klebsiella pneumoniae/genética , Transcriptoma
11.
Bioinformatics ; 38(3): 612-620, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734968

RESUMO

MOTIVATION: Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology. RESULTS: We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements. AVAILABILITY AND IMPLEMENTATION: GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Microbiano , Software , Metagenoma , Metagenômica/métodos , Família Multigênica
12.
Sci Total Environ ; 807(Pt 2): 150532, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34606868

RESUMO

Circulating saltwater aquariums hosting marine animals contain a wide range of microorganisms, which have strong implications on promoting animal health. In this study, we investigated the degradation of chloroquine phosphate, an anti-parasitic bath pharmaceutical used in saltwater quarantine and exhibition systems, and attributed the reduction in drug concentration to microbial degradation of chloroquine associated with pipeline microbial communities. To advance our knowledge on chloroquine degradation in aquatic systems, we conducted microbial and chemical analyses on three tropical saltwater systems. Our findings show that aquarium microbiome composition is shaped by sampling location (i.e., tank water and pipeline; PERMANOVA R2 = 0.09992, p = 0.0134), chloroquine dosing (PERMANOVA R2 = 0.05700, p = 0.0030), and whether the aquarium is occupied by marine animals (PERMANOVA R2 = 0.07019, p = 0.0009). Several microbial taxa belonging to the phyla Actinobacteria, Bacteroidetes, Chloroflexi, and Proteobacteria, along with functional genes related to pathways such as phenylethylamine degradation and denitrification, appeared to have differential (relative) abundance between samples where chloroquine degradation was observed and those without degradation (Benjamini-Hochberg adjusted p-value <0.05). Together, these results provide practical mitigation options to prevent or delay the development of chloroquine-degrading microbial communities in saltwater aquariums. Our results further demonstrate the need to improve our understanding of the interactions between nitrogen availability and microbial activity in saltwater systems.


Assuntos
Cloroquina
13.
Environ Sci Technol ; 55(20): 14105-14114, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606240

RESUMO

Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States. The overall community structure, determined by 16S rRNA gene amplicon sequencing, revealed high levels of bacterial diversity. Although a large fraction of the observed variation in community composition could not be explained, differences in bacterial community composition were associated with water supply (private well water vs public municipal water), water source (groundwater vs surface water), and associated differences in water chemistry (pH and chlorine). Most notably, showerheads in homes supplied with public water had higher abundances of Blastomonas, Mycobacterium, and Porphyrobacter, while Pseudorhodoplanes, Novosphingobium, and Nitrospira were more abundant in those receiving private well water. We conducted shotgun metagenomic analyses on 92 of these samples to assess differences in genomic attributes. Public water-sourced showerheads had communities enriched in genes related to lipid and xenobiotic metabolisms, virulence factors, and antibiotic resistance. In contrast, genes associated with oxidative stress and membrane transporters were over-represented in communities from private well water-sourced showerheads compared to those supplied by public water systems. These results highlight the broad diversity of bacteria found in premise plumbing across the United States and the role of the water source and treatment in shaping the microbial community structure and functional potential.


Assuntos
Água Potável , Mycobacterium , Humanos , RNA Ribossômico 16S/genética , Engenharia Sanitária , Estados Unidos , Microbiologia da Água
14.
Environ Sci Technol ; 55(23): 15831-15842, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34615350

RESUMO

Antibiotic resistance is the principal mechanism of an evergrowing bacterial threat. Antibiotic residues in the environment are a major contributor to the spread of antibiotic resistance genes (ARGs). Subinhibitory concentrations of antibiotics cause bacteria to produce reactive oxygen species (ROS), which can lead to mutagenesis and horizontal gene transfer (HGT) of ARGs; however, little is known about the mitigation of ARG dissemination through ROS removal by antioxidants. In this study, we examine how antioxidant-producing microorganisms inoculated in replicate activated sludge systems can biologically mitigate the dissemination of ARGs. Through quantitative polymerase chain reaction (qPCR), we showed that antioxidant-producing microorganisms could decrease the persistence of the RP4 plasmid and alleviate enrichment of ARGs (sul1) and class 1 integrons (intl1). Metagenomic sequencing identified the most diverse resistome and the most mutated Escherichia coli ARGs in the reactor that contained antibiotics but no antioxidant-producing microorganisms, suggesting that antioxidant-producing microorganisms mitigated ARG enrichment and mutation. Host classification revealed that antioxidant-producing microorganisms decreased the diversity of ARG hosts by shaping the microbial community through competition and functional pathway changes. Conjugative experiments demonstrated that conjugative transfer of ARGs could be mitigated by coculture with antioxidant-producing microorganisms. Overall, this is a novel study that shows how ARG enrichment and HGT can be mitigated through bioaugmentation with antioxidant-producing microorganisms.


Assuntos
Antibacterianos , Esgotos , Antibacterianos/farmacologia , Antioxidantes , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
15.
mSystems ; 6(4): e0021821, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34282933

RESUMO

Rising antimicrobial resistance severely limits efforts to treat infections and is a cause for critical concern. Renewed interest in bacteriophage therapy has advanced understanding of the breadth of species capable of targeting bacterial antimicrobial resistance mechanisms, but many questions concerning ideal application remain unanswered. The following minireview examines bacterial resistance mechanisms, the current state of bacteriophage therapy, and how bacteriophage therapy can augment strategies to combat resistance with a focus on the clinically relevant bacterium Pseudomonas aeruginosa, as well as the role of efflux pumps in antimicrobial resistance. Methods to prevent antimicrobial efflux using efflux pump inhibitors and phage steering, a type of bacteriophage therapy, are also covered. The evolutionary context underlying antimicrobial resistance and the need to include theory in the ongoing development of bacteriophage therapy are also discussed.

16.
mSystems ; : e0052421, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184912

RESUMO

Functional metagenomic libraries, physical bacterial libraries which allow the high-throughput capture and expression of microbiome genes, have been instrumental in the sequence-naive and cultivation-independent exploration of metagenomes. However, preparation of these libraries is often limited by their high DNA input requirement and their low cloning efficiency. Here, we describe a new method, mosaic ends tagmentation (METa) assembly, for highly efficient functional metagenomic library preparation. We applied tagmentation to metagenomic DNA from soil and gut microbiomes to prepare DNA inserts for high-throughput cloning into functional metagenomic libraries. The presence of mosaic end sequences in the resulting DNA fragments synergized with homology-based assembly cloning to result in a 300-fold increase in cloning efficiency compared to traditional blunt-cloning-based protocols. We show that compared to published libraries prepared by state-of-the-art protocols, METa assembly is on average ca. 20- to 200-fold more efficient and can prepare gigabase-sized libraries with as little as 200 ng of input DNA. We show the usefulness of METa assembly first by using a normative 5-µg mass of soil metagenomic DNA to prepare a 700-Gb library that allowed us to discover novel nourseothricin resistance genes and a potentially new mode of resistance to this antibiotic and second by using only 300 ng of goose fecal metagenomic DNA to prepare a 27-Gb library that captured numerous tetracycline and colistin resistance genes. METa assembly provides a streamlined, flexible, and efficient method for preparing functional metagenomic libraries, enabling new avenues of genetic and biochemical research into low-biomass or scarce microbiomes. IMPORTANCE Medically and industrially important genes can be recovered from microbial communities by high-throughput sequencing, but precise annotation is often limited to characterized genes and their relatives. Cloning a metagenome en masse into an expression host to produce a functional metagenomic library, directly connecting genes to functions, is a sequence-naive and cultivation-independent method to discover novel genes. The process of preparing these libraries is DNA greedy and inefficient, however. Here, we describe a library preparation method that is an order of magnitude more efficient and less DNA greedy. This method is consistently efficient across libraries prepared from cultures, a soil microbiome, and a goose fecal microbiome and allowed us to discover new antibiotic resistance genes and mechanisms. This library preparation method will potentially allow the functional metagenomic exploration of microbiomes that were previously off limits due to their rarity or low microbial biomass, such as biomedical swabs or exotic samples.

17.
mSphere ; 6(3): e0006821, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34192503

RESUMO

Chemotherapeutic drugs can cause harmful gastrointestinal side effects, which may be modulated by naturally occurring members of our microbiome. We constructed simplified gut-associated microbial communities to test the hypothesis that bacteria-mediated detoxification of doxorubicin (i.e., a widely used chemotherapeutic) confers protective effects on the human microbiota. Mock communities composed of up to five specific members predicted by genomic analysis to be sensitive to the drug or resistant via biotransformation and/or efflux were grown in vitro over three generational stages to characterize community assembly, response to perturbation (doxorubicin exposure), and resilience. Bacterial growth and drug concentrations were monitored with spectrophotometric assays, and strain relative abundances were evaluated with 16S rRNA gene sequencing. Bacteria with predicted resistance involving biotransformation significantly lowered concentrations of doxorubicin in culture media, permitting growth of drug-sensitive strains in monoculture. Such protective effects were not produced by strains with drug resistance conferred solely by efflux. In the mixed communities, resilience of drug-sensitive members depended on the presence and efficiency of transformers, as well as drug exposure concentration. Fitness of bacteria that were resistant to doxorubicin via efflux, though not transformation, also improved when the transformers were present. Our simplified community uncovered ecological relationships among a dynamic consortium and highlighted drug detoxification by a keystone species. This work may be extended to advance probiotic development that may provide gut-specific protection to patients undergoing cancer treatment. IMPORTANCE While chemotherapy is an essential intervention for treating many forms of cancer, gastrointestinal side effects may precede infections and risks for additional health complications. We developed an in vitro model to characterize key changes in bacterial community dynamics under chemotherapeutic stress and the role of bacterial interactions in drug detoxification to promote microbiota resilience. Our findings have implications for developing bio-based strategies to promote gut health during cancer treatment.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Bactérias/metabolismo , Biotransformação , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias/classificação , Bactérias/genética , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Filogenia , RNA Ribossômico 16S/genética
18.
Front Genet ; 12: 600111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747038

RESUMO

Environmental surveillance is a critical tool for combatting public health threats represented by the global COVID-19 pandemic and the continuous increase of antibiotic resistance in pathogens. With its power to detect entire microbial communities, metagenomics-based methods stand out in addressing the need. However, several hurdles remain to be overcome in order to generate actionable interpretations from metagenomic sequencing data for infection prevention. Conceptually and technically, we focus on viability assessment, taxonomic resolution, and quantitative metagenomics, and discuss their current advancements, necessary precautions and directions to further development. We highlight the importance of building solid conceptual frameworks and identifying rational limits to facilitate the application of techniques. We also propose the usage of internal standards as a promising approach to overcome analytical bottlenecks introduced by low biomass samples and the inherent lack of quantitation in metagenomics. Taken together, we hope this perspective will contribute to bringing accurate and consistent metagenomics-based environmental surveillance to the ground.

19.
Microbiome ; 9(1): 32, 2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33517907

RESUMO

BACKGROUND: While indoor microbiomes impact our health and well-being, much remains unknown about taxonomic and functional transitions that occur in human-derived microbial communities once they are transferred away from human hosts. Toothbrushes are a model to investigate the potential response of oral-derived microbiota to conditions of the built environment. Here, we characterize metagenomes of toothbrushes from 34 subjects to define the toothbrush microbiome and resistome and possible influential factors. RESULTS: Toothbrush microbiomes often comprised a dominant subset of human oral taxa and less abundant or site-specific environmental strains. Although toothbrushes contained lower taxonomic diversity than oral-associated counterparts (determined by comparison with the Human Microbiome Project), they had relatively broader antimicrobial resistance gene (ARG) profiles. Toothbrush resistomes were enriched with a variety of ARGs, notably those conferring multidrug efflux and putative resistance to triclosan, which were primarily attributable to versatile environmental taxa. Toothbrush microbial communities and resistomes correlated with a variety of factors linked to personal health, dental hygiene, and bathroom features. CONCLUSIONS: Selective pressures in the built environment may shape the dynamic mixture of human (primarily oral-associated) and environmental microbiota that encounter each other on toothbrushes. Harboring a microbial diversity and resistome distinct from human-associated counterparts suggests toothbrushes could potentially serve as a reservoir that may enable the transfer of ARGs. Video abstract.


Assuntos
Ambiente Construído , Microbiota , Boca/microbiologia , Escovação Dentária , Adolescente , Adulto , Idoso , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Humanos , Metagenoma/efeitos dos fármacos , Metagenoma/genética , Microbiota/efeitos dos fármacos , Microbiota/genética , Pessoa de Meia-Idade , Boca/efeitos dos fármacos , Triclosan/farmacologia , Adulto Jovem
20.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483311

RESUMO

Perturbation of natural microbial communities by antimicrobials, such as triclosan, can result in selection for antibiotic tolerance, which is of particular concern when pathogens are present. Members of the genus Pseudomonas are found in many natural microbial communities and frequently demonstrate increased abundance following triclosan exposure. The pathogen and well-studied model organism Pseudomonas aeruginosa exhibits high triclosan tolerance; however, it is unknown if all Pseudomonas species share this trait or if there are susceptible strains. We characterized the triclosan tolerance phenotypes of diverse Pseudomonas isolates obtained from triclosan-exposed built environments and identified both tolerant and sensitive strains. High tolerance is associated with carriage of the enoyl-acyl carrier reductase (ENR) isozyme gene fabV, compared to the lesser protective effects of efflux or presence of ENRs. Given its unique importance, we examined fabV distribution throughout Pseudomonas species using large-scale phylogenomic analyses. We find fabV presence or absence is largely invariant at the species level but demonstrates multiple gain and loss events in its evolutionary history. We further provide evidence of its presence on mobile genetic elements. Our results demonstrate the surprising variability in triclosan tolerance in Pseudomonas and confirm fabV to be a useful indicator for high triclosan tolerance in Pseudomonas These findings provide a framework for better monitoring of Pseudomonas in triclosan-exposed environments and interpreting effects on species and gene composition.IMPORTANCE Closely related species are typically assumed to demonstrate similar phenotypes driven by underlying conserved genotypes. When monitoring for the effect of antimicrobials on the types of species that may be selected for, this assumption may prove to be incorrect, and identification of additional genetic markers may be necessary. We isolated several phylogenetically diverse members of Pseudomonas from indoor environments and tested their phenotypic tolerance toward the commonly used antimicrobial triclosan. Although Pseudomonas isolates are broadly regarded to be highly triclosan tolerant, we demonstrate the presence of both triclosan-tolerant and -susceptible strains, separated by a difference in tolerance of nearly 3 orders of magnitude. Bioinformatic and experimental investigation demonstrated that the presence of the gene fabV was associated with high tolerance. We demonstrate that fabV is not evenly distributed in all Pseudomonas species and that its presence could be a useful predictor of high triclosan tolerance suitable for antimicrobial monitoring efforts involving triclosan.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos Locais/farmacologia , Farmacorresistência Bacteriana/genética , Pseudomonas/genética , Triclosan/farmacologia , Pseudomonas/efeitos dos fármacos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...