Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 29(1): 81-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326536

RESUMO

The 175-kDa myosin-11 from Nicotiana tabacum (Nt(175kDa)myosin-11) is exceptional in its mechanical activity as it is the fastest known processive actin-based motor, moving 10 times faster than the structurally related class 5 myosins. Although this ability might be essential for long-range organelle transport within larger plant cells, the kinetic features underlying the fast processive movement of Nt(175kDa)myosin-11 still remain unexplored. To address this, we generated a single-headed motor domain construct and carried out a detailed kinetic analysis. The data demonstrate that Nt(175kDa)myosin-11 is a high duty ratio motor, which remains associated with actin most of its enzymatic cycle. However, different from other processive myosins that establish a high duty ratio on the basis of a rate-limiting ADP-release step, Nt(175kDa)myosin-11 achieves a high duty ratio by a prolonged duration of the ATP-induced isomerization of the actin-bound states and ADP release kinetics, both of which in terms of the corresponding time constants approach the total ATPase cycle time. Molecular modeling predicts that variations in the charge distribution of the actin binding interface might contribute to the thermodynamic fine-tuning of the kinetics of this myosin. Our study unravels a new type of a high duty ratio motor and provides important insights into the molecular mechanism of processive movement of higher plant myosins.


Assuntos
Proteínas Motores Moleculares/metabolismo , Miosinas/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Actinas/química , Actinas/genética , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cinética , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Miosinas/química , Miosinas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Nicotiana/genética
2.
PLoS One ; 8(5): e64797, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23738001

RESUMO

Kinetic and thermodynamic studies of the mechanochemical cycle of myosin motors are essential for understanding the mechanism of energy conversion. Here, we report our investigation of temperature and free Mg(2+)-ion dependencies of sliding velocities of a high duty ratio class-5 myosin motor, myosin-5b from D. discoideum using in vitro motility assays. Previous studies have shown that the sliding velocity of class-5 myosins obeys modulation by free Mg(2+)-ions. Free Mg(2+)-ions affect ADP release kinetics and the dwell time of actin-attached states. The latter determines the maximal velocity of actin translocation in the sliding filament assay. We measured the temperature dependence of sliding velocity in the range from 5 to 55°C at two limiting free Mg(2+)-ion concentrations. Arrhenius plots demonstrated non-linear behavior. Based on this observation we propose a kinetic model, which explains both sensitivity towards free Mg(2+)-ions and non-linearity of the temperature dependence of sliding velocity. According to this model, velocity is represented as a simple analytical function of temperature and free Mg(2+)-ion concentrations. This function has been applied to global non-linear fit analysis of three data sets including temperature and magnesium (at 20°C) dependence of sliding velocity. As a result we obtain thermodynamic parameters (ΔH(Mg) and ΔS(Mg)) of a fast equilibrium between magnesium free (AM·D) and magnesium bound acto-myosin-ADP (AM· Mg(2+)D) states and the corresponding enthalpic barriers associated with ADP release (ΔH1(‡) and ΔH2(‡)). The herein presented integrative approach of data analysis based on global fitting can be applied to the remaining steps of the acto-myosin ATPase cycle facilitating the determination of energetic parameters and thermodynamics of acto-myosin interactions.


Assuntos
Difosfato de Adenosina/metabolismo , Magnésio/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Termodinâmica , Difosfato de Adenosina/química , Dictyostelium/metabolismo , Magnésio/química
3.
J Cell Sci ; 124(Pt 15): 2521-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21712373

RESUMO

The mitotic spindle in eukaryotic cells is composed of a bipolar array of microtubules (MTs) and associated proteins that are required during mitosis for the correct partitioning of the two sets of chromosomes to the daughter cells. In addition to the well-established functions of MT-associated proteins (MAPs) and MT-based motors in cell division, there is increasing evidence that the F-actin-based myosin motors are important mediators of F-actin-MT interactions during mitosis. Here, we report the functional characterization of the long-tailed class-1 myosin myosin-1C from Dictyostelium discoideum during mitosis. Our data reveal that myosin-1C binds to MTs and has a role in maintenance of spindle stability for accurate chromosome separation. Both myosin-1C motor function and tail-domain-mediated MT-F-actin interactions are required for the cell-cycle-dependent relocalization of the protein from the cell periphery to the spindle. We show that the association of myosin-1C with MTs is mediated through the tail domain. The myosin-1C tail can inhibit kinesin motor activity, increase the stability of MTs, and form crosslinks between MTs and F-actin. These data illustrate that myosin-1C is involved in the regulation of MT function during mitosis in D. discoideum.


Assuntos
Dictyostelium/citologia , Dictyostelium/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Fuso Acromático/metabolismo , Actinas/genética , Actinas/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Dictyostelium/genética , Microscopia de Fluorescência , Miosinas/genética , Ligação Proteica , Fuso Acromático/genética
4.
J Biol Chem ; 286(34): 29700-8, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21680745

RESUMO

Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC(50) values are in the range from 1 to 5 µm for mammalian class-1 myosins and greater than 90 µm for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway.


Assuntos
Dictyostelium/enzimologia , Hidrocarbonetos Clorados/química , Modelos Moleculares , Miosinas/antagonistas & inibidores , Miosinas/química , Pirróis/química , Regulação Alostérica , Animais , Galinhas , Coelhos , Ratos
6.
Nat Struct Mol Biol ; 16(1): 80-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19122661

RESUMO

We have identified pentabromopseudilin (PBP) as a potent inhibitor of myosin-dependent processes such as isometric tension development and unloaded shortening velocity. PBP-induced reductions in the rate constants for ATP binding, ATP hydrolysis and ADP dissociation extend the time required per myosin ATPase cycle in the absence and presence of actin. Additionally, coupling between the actin and nucleotide binding sites is reduced in the presence of the inhibitor. The selectivity of PBP differs from that observed with other myosin inhibitors. To elucidate the binding mode of PBP, we crystallized the Dictyostelium myosin-2 motor domain in the presence of Mg(2+)-ADP-meta-vanadate and PBP. The electron density for PBP is unambiguous and shows PBP to bind at a previously unknown allosteric site near the tip of the 50-kDa domain, at a distance of 16 A from the nucleotide binding site and 7.5 A away from the blebbistatin binding pocket.


Assuntos
Miosinas/metabolismo , Pirróis/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Galinhas , Cinética , Modelos Moleculares , Miosinas/antagonistas & inibidores , Miosinas/química , Miosinas/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Ratos , Sensibilidade e Especificidade
7.
J Biol Chem ; 283(40): 26902-10, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18650439

RESUMO

Dictyostelium myosin-5b is the gene product of myoJ and one of two closely related myosin-5 isoenzymes produced in Dictyostelium discoideum. Here we report a detailed investigation of the kinetic and functional properties of the protein. In standard assay buffer conditions, Dictyostelium myosin-5b displays high actin affinity in the presence of ADP, fast ATP hydrolysis, and a high steady-state ATPase activity in the presence of actin that is rate limited by ADP release. These properties are typical for a processive motor that can move over long distances along actin filaments without dissociating. Our results show that a physiological decrease in the concentration of free Mg(2+)-ions leads to an increased rate of ADP release and shortening of the fraction of time the motor spends in the strong actin binding states. Consistently, the ability of the motor to efficiently translocate actin filaments at very low surface densities decreases with decreasing concentrations of free Mg(2+)-ions. In addition, we provide evidence that the observed changes in Dd myosin-5b motor activity are of physiological relevance and propose a mechanism by which this molecular motor can switch between processive and non-processive movement.


Assuntos
Dictyostelium/enzimologia , Miosinas/metabolismo , Proteínas de Protozoários/metabolismo , Citoesqueleto de Actina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cátions Bivalentes/metabolismo , Isoenzimas/metabolismo , Magnésio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...