Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862497

RESUMO

Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision. We present a contextual review of the current state of the art in nToF detectors at ICF facilities in the United States, outlining the physics that can be measured, the detector technologies currently deployed and analysis techniques used.

2.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

3.
Rev Sci Instrum ; 93(11): 113528, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461449

RESUMO

In the dynamic environment of burning, thermonuclear deuterium-tritium plasmas, diagnosing the time-resolved neutron energy spectrum is of critical importance. Strategies exist for this diagnosis in magnetic confinement fusion plasmas, which presently have a lifetime of ∼1012 longer than inertial confinement fusion (ICF) plasmas. Here, we present a novel concept for a simple, precise, and scale-able diagnostic to measure time-resolved neutron spectra in ICF plasmas. The concept leverages general tomographic reconstruction techniques adapted to time-of-flight parameter space, and then employs an updated Monte Carlo algorithm and National Ignition Facility-relevant constraints to reconstruct the time-evolving neutron energy spectrum. Reconstructed spectra of the primary 14.028 MeV nDT peak are in good agreement with the exact synthetic spectra. The technique is also used to reconstruct the time-evolving downscattered spectrum, although the present implementation shows significantly more error.

4.
Rev Sci Instrum ; 93(11): 113550, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461502

RESUMO

The analysis of the National Ignition Facility (NIF) neutron time-of-flight (nToF) detectors uses a forward-fit routine that depends critically on the instrument response functions (IRFs) of the diagnostics. The details of the IRFs used can have large impacts on measurements such as ion temperature and down-scattered ratio (DSR). Here, we report on the recent steps taken to construct and validate nToF IRFs at the NIF to an increased degree of accuracy, as well as remove the need for fixed DSR baseline offsets. The IRF is treated in two parts: a "core," measured experimentally with an x-ray impulse source, and a "tail" that occurs later in time and has limited experimental data. The tail region is calibrated with the data from indirect drive exploding pusher shots, which have little neutron scattering and are traditionally assumed to have zero DSR. Using analytic modeling estimates, the non-zero DSR for these shots is estimated. The impact of varying IRF tail components on DSR is investigated with a systematic parameter study, and good agreement is found with the non-zero DSR estimates. These approaches will be used to improve the precision and uncertainty of NIF nToF DSR measurements.

5.
Rev Sci Instrum ; 93(11): 113536, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461534

RESUMO

A concept for using an intermediate distance (0.3-3.0 m) neutron time-of-flight (nToF) to provide a constraint on the measurement of the time-dependence of ion temperature in inertial confinement fusion implosions is presented. Simulated nToF signals at different distances are generated and, with a priori knowledge of the burn-averaged quantities and burn history, analyzed to determine requirements for a future detector. Results indicate a signal-to-noise ratio >50 and time resolution <20 ps to constrain the ion temperature gradient to ∼±25% (0.5 keV/100 ps).

6.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

7.
Rev Sci Instrum ; 92(4): 043512, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243456

RESUMO

Nuclear diagnostics provide measurements of inertial confinement fusion implosions used as metrics of performance for the shot. The interpretation of these measurements for shots with low mode asymmetries requires a way of combining the data to produce a "sky map" where the individual line-of-sight values are used to interpolate to other positions in the sky. These interpolations can provide information regarding the orientation of the low mode asymmetries. We describe the interpolation method, associated uncertainties, and correlations between different metrics, e.g., Tion, down scatter ratio, and hot-spot velocity direction. This work is also related to recently reported studies [H. G. Rinderknecht et al., Phys. Rev. Lett. 124, 145002 (2020) and K. M. Woo et al., Phys. Plasmas 27, 062702 (2020)] of low mode asymmetries. We report an analysis that makes use of a newly commissioned line of sight, a scheme for incorporating multiple neutron spectrum measurement types, and recent work on the sources of implosion asymmetry to provide a more complete picture of implosion performance.

8.
Rev Sci Instrum ; 92(5): 053543, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243308

RESUMO

Neutron-yield diagnostics at the NIF have been upgraded to include 48 detectors placed around the NIF target chamber to assess the DT-neutron-yield isotropy for inertial confinement fusion experiments. Real-time neutron-activation detectors are used to understand yield asymmetries due to Doppler shifts in the neutron energy attributed to hotspot motion, variations in the fuel and ablator areal densities, and other physics effects. In order to isolate target physics effects, we must understand the contribution due to neutron scattering associated with the different hardware configurations used for each experiment. We present results from several calibration experiments that demonstrate the ability to achieve our goal of 1% or better precision in determining the yield isotropy.

9.
Rev Sci Instrum ; 92(5): 053526, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243327

RESUMO

Recent inertial confinement fusion measurements have highlighted the importance of 3D asymmetry effects on implosion performance. One prominent example is the bulk drift velocity of the deuterium-tritium plasma undergoing fusion ("hotspot"), vHS. Upgrades to the National Ignition Facility neutron time-of-flight diagnostics now provide vHS to better than 1 part in 104 and enable cross correlations with other measurements. This work presents the impact of vHS on the neutron yield, downscatter ratio, apparent ion temperature, electron temperature, and 2D x-ray emission. The necessary improvements to diagnostic suites to take these measurements are also detailed. The benefits of using cross-diagnostic analysis to test hotspot models and theory are discussed, and cross-shot trends are shown.

10.
Rev Sci Instrum ; 92(4): 043555, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243390

RESUMO

The time-resolved measurement of neutrons emitted from nuclear implosions at inertial confinement fusion facilities is used to characterize the fusing plasma. Several significant quantities are routinely measured by neutron time-of-flight (nToF) detectors in these experiments. Current nToF detectors use scintillators as well as solid-state Cherenkov radiators. The latter has an inherently faster time response and can provide a co-registered γ-ray measurement as well as improved precision in the bulk hot-spot velocity. This work discusses a nToF ellipsoidal detector that also utilizes a solid-state Cherenkov radiator. The detector has the potential to achieve a fast instrument response function allowing for characterization of the γ-ray burn history as well as the ability to field the detector closer to the fusion source. Proof-of-concept testing of the nToF ellipsoidal detector has been conducted at the National Ignition Facility using commercial optics. A time-resolved neutron signal has been measured from the diagnostic. Preliminary simulations corroborate the results.

11.
Rev Sci Instrum ; 92(4): 043527, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243407

RESUMO

The Real Time Nuclear Activation Detector (RTNAD) array at NIF measures the distribution of 14 MeV neutrons emitted by deuterium-tritium (DT) fueled inertial confinement fusion implosions. The uniformity of the neutron distribution is an important indication of implosion symmetry and DT shell integrity. The array consists of 48 LaBr3(Ce) crystal gamma-ray spectrometers mounted outside the NIF target chamber, which continuously monitor the slow decay of the 909 keV gamma-ray line from activated 89Zr located in Zr cups surrounding each crystal. The measured decay rate dramatically increases during a DT implosion in proportion to the number of 14 MeV neutrons striking each Zr cup. The neutrons produce activated 89Zr through an (n, 2n) reaction on 90Zr, which is insensitive to low energy neutrons. The neutron flux along the detector line-of-sight at shot time is determined by extrapolating the fitted 909 keV decay curve back to shot time. Automatic analysis algorithms were developed to handle the non-stop data stream. The large number of detectors and the high statistical accuracy of the array enable the spherical harmonic modes of the neutron angular distribution to be measured up to L ≤ 4 to provide a better understanding of implosion dynamics. In addition, these data combined with measurements of the down-scattered neutrons can be used to derive fuel areal density distributions. This paper will describe the RTNAD hardware and analysis procedures.

12.
Rev Sci Instrum ; 92(2): 023516, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648072

RESUMO

Measurement of the neutron spectrum from inertial confinement fusion implosions is one of the primary diagnostics of implosion performance. Analysis of the spectrum gives access to quantities such as neutron yield, hot-spot velocity, apparent ion temperature, and compressed fuel ρr through measurement of the down-scatter ratio. On the National Ignition Facility, the neutron time-of-flight suite has been upgraded to include five independent, collimated lines of sight, each comprising a high dynamic range bibenzyl/diphenylacetylene-stilbene scintillator [R. Hatarik et al., Plasma Fusion Res. 9, 4404104 (2014)] and high-speed fused silica Cherenkov detectors [A. S. Moore et al., Rev. Sci. Instrum. 89, 10I120 (2018)].

13.
Rev Sci Instrum ; 92(2): 023513, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648112

RESUMO

The measurement of plasma hotspot velocity provides an important diagnostic of implosion performance for inertial confinement fusion experiments at the National Ignition Facility. The shift of the fusion product neutron mean kinetic energy as measured along multiple line-of-sight time-of-flight spectrometers provides velocity vector components from which the hotspot velocity is inferred. Multiple measurements improve the hotspot velocity inference; however, practical considerations of available space, operational overhead, and instrumentation costs limit the number of possible line-of-sight measurements. We propose a solution to this classical "experiment design" problem that optimizes the precision of the velocity inference for a limited number of measurements.

14.
Phys Rev Lett ; 125(15): 155003, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095614

RESUMO

The implosion efficiency in inertial confinement fusion depends on the degree of stagnated fuel compression, density uniformity, sphericity, and minimum residual kinetic energy achieved. Compton scattering-mediated 50-200 keV x-ray radiographs of indirect-drive cryogenic implosions at the National Ignition Facility capture the dynamic evolution of the fuel as it goes through peak compression, revealing low-mode 3D nonuniformities and thicker fuel with lower peak density than simulated. By differencing two radiographs taken at different times during the same implosion, we also measure the residual kinetic energy not transferred to the hot spot and quantify its impact on the implosion performance.

15.
Phys Rev Lett ; 124(14): 145002, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338973

RESUMO

Data from nuclear diagnostics present correlated signatures of azimuthal implosion asymmetry in recent indirect-drive inertial confinement fusion (ICF) implosion campaigns performed at the National Ignition Facility (NIF). The mean hot-spot velocity, inferred from the Doppler shift of 14 MeV neutrons produced by deuterium-tritium (DT) fusion, is systematically directed toward one azimuthal half of the NIF target chamber, centered on ϕ≈70°. Areal density (ρR) asymmetry of the converged DT fuel, inferred from nuclear activation diagnostics, presents a minimum ρR in the same direction as the hot-spot velocity and with ΔρR amplitude correlated with velocity magnitude. These two correlated observations, which are seen in all recent campaigns with cryogenic layers of DT fuel, are a known signature of asymmetry in the fuel convergence, implying a systematic azimuthal drive asymmetry across a wide range of shot and target configurations. The direction of the implied radiation asymmetry is observed to cluster toward the hohlraum diagnostic windows. This low-mode asymmetry degrades hot-spot conditions at peak convergence and limits implosion performance and yield.

16.
Phys Rev Lett ; 123(16): 165001, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702328

RESUMO

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data.

17.
Nat Commun ; 10(1): 4156, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519881

RESUMO

Our understanding of a large range of astrophysical phenomena depends on a precise knowledge of charged particle nuclear reactions that occur at very low rates, which are difficult to measure under relevant plasma conditions. Here, we describe a method for generating dense plasmas at effective ion temperatures >20 keV, sufficient to induce measurable charged particle nuclear reactions. Our approach uses ultra-intense lasers to drive micron-sized, encapsulated nanofoam targets. Energetic electrons generated in the intense laser interaction pass through the foam, inducing a rapid expansion of the foam ions; this results in a hot, near-solid density plasma. We present the laser and target conditions necessary to achieve these conditions and illustrate the system performance using three-dimensional particle-in-cell simulations, outline potential applications and calculate expected nuclear reaction rates in the D(d,n) and 12C(p,γ) systems assuming CD, or CH aerogel foams.

18.
Rev Sci Instrum ; 89(10): 10I138, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399709

RESUMO

An important diagnostic value of a shot at the National Ignition Facility is the resultant center-of-mass motion of the imploding capsule. This residual velocity reduces the efficiency of converting laser energy into plasma temperature. A new analysis method extracts the effective hot spot motion by using information from multiple neutron time-of-flight (nToF) lines-of-sight (LoSs). This technique fits a near Gaussian spectrum to the nToF scope traces and overcomes reliance on models to relate the plasma temperature to the mean energy of the emitted neutrons. This method requires having at least four nToF LoSs. The results of this analysis will be compared to an approach where each LoS is analyzed separately and a model is used to infer the mean energy of the emitted neutrons.

19.
Rev Sci Instrum ; 89(10): 10I136, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399741

RESUMO

Neutron time-of-flight diagnostics at the NIF were recently outfitted with Cherenkov detectors. A fused silica radiator delivers sub-nanosecond response time and is optically coupled to a microchannel plate photomultiplier tube with gain from ∼1 to 104. Capitalizing on fast time response and gamma-ray sensitivity, these systems can provide better than 30 ps precision for measuring first moments of neutron distributions. Generation of ab initio instrument response functions (IRFs) is critical to meet the <1% uncertainty needed. A combination of Monte Carlo modeling, benchtop characterization, and in situ comparison is employed. Close agreement is shown between the modeled IRFs and in situ measurements using the NIF's short-pulse advanced radiographic capability beams. First and second moments of neutron spectra calculated using ab initio IRFs agree well with established scintillator measurements. Next-step designs offer increased sensitivity and time-response.

20.
Rev Sci Instrum ; 89(10): 10I120, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399816

RESUMO

A fused silica Cherenkov radiator has been implemented at the National Ignition Facility to provide a new high precision measurement of the time-of-flight spectrum of 14.1 MeV DT fusion neutrons. This detector enables a high precision (<30 ps) co-registered measurement of both a thresholded γ-ray and a neutron spectrum on a single record. Other methods typically require γ and neutron signals to be co-registered via other diagnostics and/or dedicated timing experiments. Analysis of the co-registered γ and neutron signals allows precise extraction of the mean neutron energy and bulk hot-spot velocity, both of which were not possible with prior scintillator technologies. Initial measurements demonstrate the feasibility of this measurement and indicate that combined detection of neutrons and γ-rays on multiple lines-of-sight should enable the bulk vector velocity of the implosion hot-spot to be determined to ≈5 km/s and reduced uncertainty in the spectral width ≈0.1 keV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...