Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36992379

RESUMO

Codon deoptimization (CD) has been recently used as a possible strategy to derive foot-and-mouth disease (FMD) live-attenuated vaccine (LAV) candidates containing DIVA markers. However, reversion to virulence, or loss of DIVA, from possible recombination with wild-type (WT) strains has yet to be analyzed. An in vitro assay was developed to quantitate the levels of recombination between WT and a prospective A24-P2P3 partially deoptimized LAV candidate. By using two genetically engineered non-infectious RNA templates, we demonstrate that recombination can occur within non-deoptimized viral genomic regions (i.e., 3'end of P3 region). The sequencing of single plaque recombinants revealed a variety of genome compositions, including full-length WT sequences at the consensus level and deoptimized sequences at the sub-consensus/consensus level within the 3'end of the P3 region. Notably, after further passage, two recombinants that contained deoptimized sequences evolved to WT. Overall, recombinants featuring large stretches of CD or DIVA markers were less fit than WT viruses. Our results indicate that the developed assay is a powerful tool to evaluate the recombination of FMDV genomes in vitro and should contribute to the improved design of FMDV codon deoptimized LAV candidates.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Estudos Prospectivos , Vacinas Virais/genética , Códon , Febre Aftosa/genética , Recombinação Genética , Vírus da Febre Aftosa/genética
2.
Microbiol Resour Announc ; 11(10): e0058422, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36094180

RESUMO

Nearly complete genomes of 49 novel foot-and-mouth disease virus (FMDV) SAT1 strains acquired from oropharyngeal fluid samples from asymptomatic African Cape buffalo in Kenya in 2016 were determined. Sequences were from primary passage or plaque-purified dually SAT1/SAT2-infected samples. These sequences are important for elucidation of the molecular epidemiology of persistent and subclinical FMDV infections.

3.
Microbiol Resour Announc ; 11(10): e0058522, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36094207

RESUMO

Foot-and-mouth disease virus (FMDV) SAT2 sequences were acquired from Cape buffalo in Kenya in 2016, from either primary passage (n = 38) or plaque purification of dually SAT1/SAT2-infected samples (n = 61). All samples were derived from asymptomatic animals. These sequences contribute to our understanding of FMDV diversity in reservoirs and during subclinical FMDV infections.

4.
Microbiol Resour Announc ; 11(8): e0057422, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35861523

RESUMO

We report the near full genome sequences of 18 isolates of foot-and-mouth disease virus serotype O and 6 isolates of serotype A obtained from outbreaks in Pakistan between 2011 and 2012. The scarcity of full-length FMDV sequences from this region enhances the importance of these genomes for understanding regional molecular epidemiology.

5.
Microbiol Resour Announc ; 11(8): e0057522, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862920

RESUMO

We report the nearly full genome sequences of 14 isolates of serotype A foot-and-mouth disease virus and 5 isolates of serotype O, which were obtained from subclinically infected Asian buffalo in Pakistan in 2011 to 2012. Sequences from subclinically infected animals are rare and complement the more commonly available sequences from clinical cases.

6.
Pathogens ; 11(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35745498

RESUMO

Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the frequency of recombination and associated virus-host interactions within an infected host have not been determined. We have previously reported the detection of interserotypic recombinant FMDVs in oropharyngeal fluid (OPF) samples of 42% (5/12) of heterologously superinfected FMDV carrier cattle. The present investigation consists of a detailed analysis of the virus populations in these samples including identification and characterization of additional interserotypic minority recombinants. In every animal in which recombination was detected, recombinant viruses were identified in the OPF at the earliest sampling point after superinfection. Some recombinants remained dominant until the end of the experiment, whereas others were outcompeted by parental strains. Genomic analysis of detected recombinants suggests host immune pressure as a major driver of recombinant emergence as all recombinants had capsid-coding regions derived from the superinfecting virus to which the animals did not have detectable antibodies at the time of infection. In vitro analysis of a plaque-purified recombinant virus demonstrated a growth rate comparable to its parental precursors, and measurement of its specific infectivity suggested that the recombinant virus incurred no penalty in packaging its new chimeric genome. These findings have important implications for the potential role of persistently infected carriers in FMDV ecology and the emergence of novel strains.

7.
Microbiol Resour Announc ; 11(6): e0031222, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35546123

RESUMO

We report the near-full-length genome sequences of 22 isolates of foot-and-mouth disease virus (FMDV) serotype Asia-1, lineage Sindh-08, obtained from foot-and-mouth disease outbreaks in Pakistan between 2011 and 2012. The scarcity of full-length FMDV sequences from this region enhances the importance of these new genomes for understanding the regional molecular epidemiology.

8.
Viruses ; 14(5)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35632639

RESUMO

African buffalo are the natural reservoirs of the SAT serotypes of foot-and-mouth disease virus (FMDV) in sub-Saharan Africa. Most buffalo are exposed to multiple FMDV serotypes early in life, and a proportion of them become persistently infected carriers. Understanding the genetic diversity and evolution of FMDV in carrier animals is critical to elucidate how FMDV persists in buffalo populations. In this study, we obtained oropharyngeal (OPF) fluid from naturally infected African buffalo, and characterized the genetic diversity of FMDV. Out of 54 FMDV-positive OPF, 5 were co-infected with SAT1 and SAT2 serotypes. From the five co-infected buffalo, we obtained eighty-nine plaque-purified isolates. Isolates obtained directly from OPF and plaque purification were sequenced using next-generation sequencing (NGS). Phylogenetic analyses of the sequences obtained from recombination-free protein-coding regions revealed a discrepancy in the topology of capsid proteins and non-structural proteins. Despite the high divergence in the capsid phylogeny between SAT1 and SAT2 serotypes, viruses from different serotypes that were collected from the same host had a high genetic similarity in non-structural protein-coding regions P2 and P3, suggesting interserotypic recombination. In two of the SAT1 and SAT2 co-infected buffalo identified at the first passage of viral isolation, the plaque-derived SAT2 genomes were distinctly grouped in two different genotypes. These genotypes were not initially detected with the NGS from the first passage (non-purified) virus isolation sample. In one animal with two SAT2 haplotypes, one plaque-derived chimeric sequence was found. These findings demonstrate within-host evolution through recombination and point mutation contributing to broad viral diversity in the wildlife reservoir. These mechanisms may be critical to FMDV persistence at the individual animal and population levels, and may contribute to the emergence of new viruses that have the ability to spill-over to livestock and other wildlife species.


Assuntos
Coinfecção , Vírus da Febre Aftosa , Febre Aftosa , Animais , Animais Selvagens , Búfalos , Proteínas do Capsídeo/genética , Coinfecção/veterinária , Febre Aftosa/epidemiologia , Quênia , Filogenia , Sorogrupo
9.
Microbiol Resour Announc ; 11(6): e0031122, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35616404

RESUMO

We report the near-full-genome sequences of 49 isolates of serotype Asia-1 foot-and-mouth disease virus obtained from subclinically infected Asian buffalo in Islamabad Capital Region, Pakistan, in 2011 to 2012. Sequences from subclinically infected animals are exceedingly rare and complement the more commonly available sequences acquired from clinical cases.

10.
Microbiol Resour Announc ; 11(2): e0116721, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35112907

RESUMO

Here, we report the genome of bovine viral diarrhea virus 1 (BVDV-1) contaminating a continuous fetal bovine kidney cell line. The cell line (LFBK-αVß6) is used for the rapid isolation and serotyping of foot-and-mouth disease virus (FMDV). The sequence contains the full polyprotein-coding sequence and partial untranslated regions (UTRs).

11.
Transbound Emerg Dis ; 69(1): 72-87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34237198

RESUMO

Transboundary movement of animal feed and feed ingredients has been identified as a route for pathogen incursions. While imports of animals and animal-derived products are highly regulated for the purpose of infectious disease prevention, there has been less consideration of the viability of infectious agents in inanimate products, such as feed. This study investigated the ability of foot-and-mouth disease virus (FMDV) to remain infectious as a contaminant of commercial whole pig feed and select pig feed ingredients, and to establish the minimum infectious dose (MIDF ) required to cause foot-and-mouth disease (FMD) in pigs that consumed contaminated feed. FMDV viability in vitro varied depending on virus strain, feed product, and storage temperature, with increased duration of infectivity in soybean meal compared to pelleted whole feed. Specifically, both strains of FMDV evaluated remained viable through to the end of the 37 day observation period in experimentally contaminated soybean meal stored at 4 or 20°C . The MIDF for pigs consuming contaminated feed varied across virus strains and exposure duration in the range of 106.2 to 107 TCID50 . The ability of FMDV to cause infection in exposed pigs was mitigated by pre-treatment of feed with two commercially available feed additives, based on either formaldehyde (SalCURB®) or lactic acid (Guardian™). Our findings demonstrate that FMDV may remain infectious in pig feed ingredients for durations compatible with transoceanic transport. Although the observed MIDF was relatively high, variations in feeding conditions and biophysical characteristics of different virus strains may alter the probability of infection. These findings may be used to parameterize modelling of the risk of FMDV incursions and to regulate feed importation to minimize the risk of inadvertent importation.


Assuntos
Ração Animal/virologia , Contaminação de Alimentos , Febre Aftosa , Doenças dos Suínos , Animais , Febre Aftosa/prevenção & controle , Febre Aftosa/transmissão , Vírus da Febre Aftosa , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/transmissão
12.
J Virol ; 95(24): e0165021, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586864

RESUMO

Foot-and-mouth disease (FMD) field studies have suggested the occurrence of simultaneous infection of individual hosts by multiple virus strains; however, the pathogenesis of foot-and-mouth disease virus (FMDV) coinfections is largely unknown. In the current study, cattle were experimentally exposed to two FMDV strains of different serotypes (O and A). One cohort was simultaneously infected with both viruses, while additional cohorts were initially infected with FMDV A and subsequently superinfected with FMDV O after 21 or 35 days. Coinfections were confirmed during acute infection, with both viruses concurrently detected in blood, lesions, and secretions. Staggered exposures resulted in overlapping infections as convalescent animals with persistent subclinical FMDV infection were superinfected with a heterologous virus. Staggering virus exposure by 21 days conferred clinical protection in six of eight cattle, which were subclinically infected following the heterologous virus exposure. This effect was transient, as all animals superinfected at 35 days post-initial infection developed fulminant FMD. The majority of cattle maintained persistent infection with one of the two viruses while clearing the other. Analysis of viral genomes confirmed interserotypic recombination events within 10 days in the upper respiratory tract of five superinfected animals from which the dominant genomes contained the capsid coding regions of the O virus and nonstructural coding regions of the A virus. In contrast, there were no dominant recombinant genomes detected in samples from simultaneously coinfected cattle. These findings inculpate persistently infected carriers as potential FMDV mixing vessels in which novel strains may rapidly emerge through superinfection and recombination. IMPORTANCE Foot-and-mouth disease (FMD) is a viral infection of livestock of critical socioeconomic importance. Field studies from areas of endemic FMD suggest that animals can be simultaneously infected by more than one distinct variant of FMD virus (FMDV), potentially resulting in emergence of novel viral strains through recombination. However, there has been limited investigation of the mechanisms of in vivo FMDV coinfections under controlled experimental conditions. Our findings confirmed that cattle could be simultaneously infected by two distinct serotypes of FMDV, with different outcomes associated with the timing of exposure to the two different viruses. Additionally, dominant interserotypic recombinant FMDVs were discovered in multiple samples from the upper respiratory tracts of five superinfected animals, emphasizing the potential importance of persistently infected FMDV carriers as sources of novel FMDV strains.


Assuntos
Portador Sadio/veterinária , Coinfecção/veterinária , Coinfecção/virologia , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , Infecção Persistente/veterinária , Animais , Anticorpos Antivirais/sangue , Portador Sadio/virologia , Bovinos , Doenças dos Bovinos/virologia , Vírus da Febre Aftosa/genética , Gado/virologia , Infecção Persistente/virologia , Sorogrupo
13.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414349

RESUMO

We report the genome sequences of 12 recombinant foot-and-mouth disease virus isolates from Vietnam. The recombinant strain has a capsid region from an A/Sea-97 strain and a nonstructural segment from an O/ME-SA/PanAsia strain. The isolates were obtained from two outbreak samples collected in June 2017 and 10 subclinical samples collected between 2017 and 2019.

14.
Front Vet Sci ; 7: 334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596275

RESUMO

Data-driven modeling of incursions of high-consequence, transboundary pathogens of animals is a critical component of veterinary preparedness. However, simplifying assumptions and excessive use of proxy measures to compensate for gaps in available data may compromise modeled outcomes. The current investigation was prospectively designed to address two major gaps in current knowledge of foot-and-mouth disease virus (FMDV) pathogenesis in pigs: the end (duration) of the infectious period and the viability of FMDV in decaying carcasses. By serial exposure of sentinel groups of pigs to the same group of donor pigs infected by FMDV A24 Cruzeiro, it was demonstrated that infected pigs transmitted disease at 10 days post infection (dpi), but not at 15 dpi. Assuming a latent period of 1 day, this would result in a conservative estimate of an infectious duration of 9 days, which is considerably longer than suggested by a previous report from an experiment performed in cattle. Airborne contagion was diminished within two days of removal of infected pigs from isolation rooms. FMDV in muscle was inactivated within 7 days in carcasses stored at 4oC. By contrast, FMDV infectivity in vesicle epithelium harvested from intact carcasses stored under similar conditions remained remarkably high until the study termination at 11 weeks post mortem. The output from this study consists of experimentally determined data on contagion associated with FMDV-infected pigs. This information may be utilized to update parameterization of models used for foot-and-mouth disease outbreak simulations involving areas of substantial pig production.

15.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299883

RESUMO

We report the genome sequences of seven foot-and-mouth disease (FMD) virus (FMDV) isolates collected in India between 1997 and 2009. The strains represented four sublineages within the O/ME-SA/Ind2001 lineage. These viruses provide insights into FMDV diversity and evolution in India and may influence future control measures, including vaccine selections.

16.
Transbound Emerg Dis ; 67(5): 2206-2221, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32303117

RESUMO

Quantitative knowledge on the contribution of African buffalo to the epidemiology of foot-and-mouth disease virus (FMDV) in East Africa is lacking, and this information is essential for the design of control programs in the region. The objective of this study was to investigate the epidemiology of FMDV in buffalo, including the role of buffalo in the circulation of FMDV in livestock populations. We collected blood and oropharyngeal fluids from 92 wild buffalo and 98 sympatric cattle in central Kenya and sequenced the virus' VP1 coding region. We show that FMDV has a high seroprevalence in buffalo (~77%) and targeted cattle (~93%). In addition, we recovered 80 FMDV sequences from buffalo, all of which were serotype SAT1 and SAT2, and four serotype O and A sequences from sympatric cattle. Notably, six individual buffalo were co-infected with both SAT1 and SAT2. Amongst sympatric buffalo and cattle, the fact that no SAT1 or 2 sequences were found in cattle suggests that transmission of FMDV from buffalo to sympatric cattle is rare. Similarly, there was no evidence that serotype O and A sequences found in cattle were transmitted to buffalo. However, viruses from FMDV outbreaks in cattle elsewhere in Kenya were closely related to SAT1 and SAT2 viruses found in buffalo in this study, suggesting that FMDV in cattle and buffalo do not constitute independently evolving populations. We also show that fine-scale geographic features, such as rivers, influence the circulation of FMDV in buffalo and that social segregation amongst sympatric herds may limit between-herd transmission. These results significantly advance our understanding of the ecology and molecular epidemiology of FMDV at wildlife-livestock interfaces in East Africa and will help to inform the design of control and surveillance strategies for this disease in the region.

17.
Microbiol Resour Announc ; 9(5)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001559

RESUMO

We report the genomes of five foot-and-mouth disease viruses (FMDVs) from distinct provinces in Vietnam. All five viruses were grouped within the O/CATHAY topotype. Sequences contain the full polyprotein coding sequence and partial untranslated regions. These genomes provide critical data on the spread and evolution of FMDVs in the region.

18.
Transbound Emerg Dis ; 67(3): 1257-1270, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31880066

RESUMO

Continuous surveillance for foot-and-mouth disease (FMD) in endemic settings such as West Africa is imperative to support improved local and regional control plans, with the long-term goal of regional eradication. This paper describes the genetic characterization of FMD viruses (FMDV) obtained from outbreaks in Nigeria (n = 45) and Cameroon (n = 15) during 2016 and from archival samples (n = 3) retrieved from a 2014 outbreak in Nigeria. These viruses were analysed in the context of previously published FMDV sequences from the region. Four FMDV serotypes: O, A, SAT1 and SAT2, were detected. Phylogenetic analyses of the VP1 coding sequences indicate the continuity of FMDV serotype O East Africa-3 (O/EA-3), serotype A AFRICA genotype G-IV (A/AFRICA/G-IV) and serotype South African Territories (SAT) 2 lineage VII (SAT2/VII). The FMDV SAT1 topotype X (SAT1/X), which emerged in Nigeria in 2015, continued to be associated with outbreaks in the region during 2016, and SAT1 is reported for the first time from Cameroon. Additionally, a re-emergence or re-introduction of the serotype O West Africa (O/WA) topotype in Nigeria is described herein. Our findings indicate a consistent, pan-serotypic relationship between FMDV strains detected in Cameroon and Nigeria. Additionally, FMDV strains from West Africa obtained in this study were genetically related to those occurring in East and North Africa. These phylogenetic relationships suggest that animal movements (pastoralism and/or trade) are important factors for virus spread across the African continent. These data provide critical baselines which are a necessary component of Stages 0 and 1 of the Progressive Control Pathway of FMD (PCP-FMD). Specifically, characterizing the existing virus strains (risk) provides the basis for the comprehensive risk-based control plan which is the requisite criteria for Nigeria's transition to Stage 2 of PCP-FMD, and for coordinated regional control of FMD.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Animais , Camarões/epidemiologia , Surtos de Doenças , Febre Aftosa/epidemiologia , Genótipo , Gado , Nigéria/epidemiologia , Filogenia , Vigilância da População , Sorogrupo
19.
Microbiol Resour Announc ; 8(49)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806747

RESUMO

We report the genomes of four foot-and-mouth disease virus (FMDV) serotype SAT 1 topotype X isolates from Cameroon. The viruses were isolated from bovine epithelium collected during an outbreak in 2016. These novel sequences update knowledge of FMDV diversity in Central Africa and contribute to regional FMDV molecular epidemiology.

20.
Microbiol Resour Announc ; 8(38)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537675

RESUMO

We report the genome sequence of a foot-and-mouth disease virus (FMDV) serotype A topotype Africa isolate collected from bovine vesicular epithelium from Kenya in 2016. This novel sequence updates the knowledge of FMDV diversity in eastern Africa and has important implications for FMDV epidemiology and molecular analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...