Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3305, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37280208

RESUMO

Silica glass is a high-performance material used in many applications such as lenses, glassware, and fibers. However, modern additive manufacturing of micro-scale silica glass structures requires sintering of 3D-printed silica-nanoparticle-loaded composites at ~1200 °C, which causes substantial structural shrinkage and limits the choice of substrate materials. Here, 3D printing of solid silica glass with sub-micrometer resolution is demonstrated without the need of a sintering step. This is achieved by locally crosslinking hydrogen silsesquioxane to silica glass using nonlinear absorption of sub-picosecond laser pulses. The as-printed glass is optically transparent but shows a high ratio of 4-membered silicon-oxygen rings and photoluminescence. Optional annealing at 900 °C makes the glass indistinguishable from fused silica. The utility of the approach is demonstrated by 3D printing an optical microtoroid resonator, a luminescence source, and a suspended plate on an optical-fiber tip. This approach enables promising applications in fields such as photonics, medicine, and quantum-optics.

2.
ACS Nano ; 17(11): 10617-10627, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37220885

RESUMO

The interest in 2D materials continues to grow across numerous scientific disciplines as compounds with unique electrical, optical, chemical, and thermal characteristics are being discovered. All these properties are governed by an all-surface nature and nanoscale confinement, which can easily be altered by extrinsic influences, such as defects, dopants or strain, adsorbed molecules, and contaminants. Here, we report on the ubiquitous presence of polymeric adlayers on top of layered transition metal dichalcogenides (TMDs). The atomically thin layers, not evident from common analytic methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), or scanning electron microscopy (SEM), could be identified with highly resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS). The layers consist of hydrocarbons, which preferentially adsorb to the hydrophobic van der Waals surfaces of TMDs, derived from the most common methods. Fingerprint fragmentation patterns enable us to identify certain polymers and link them to those used during preparation and storage of the TMDs. The ubiquitous presence of polymeric films on 2D materials has wide reaching implications for their investigation, processing, and applications. In this regard, we reveal the nature of polymeric residues after commonly used transfer procedures on MoS2 films and investigate several annealing procedures for their removal.

3.
ACS Nano ; 17(9): 8041-8052, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37074334

RESUMO

The performance of two-dimensional (2D) materials is promising for electronic, photonic, and sensing devices since they possess large surface-to-volume ratios, high mechanical strength, and broadband light sensitivity. While significant advances have been made in synthesizing and transferring 2D materials onto different substrates, there is still the need for scalable patterning of 2D materials with nanoscale precision. Conventional lithography methods require protective layers such as resist or metals that can contaminate or degrade the 2D materials and deteriorate the final device performance. Current resist-free patterning methods are limited in throughput and typically require custom-made equipment. To address these limitations, we demonstrate the noncontact and resist-free patterning of platinum diselenide (PtSe2), molybdenum disulfide (MoS2), and graphene layers with nanoscale precision at high processing speed while preserving the integrity of the surrounding material. We use a commercial, off-the-shelf two-photon 3D printer to directly write patterns in the 2D materials with features down to 100 nm at a maximum writing speed of 50 mm/s. We successfully remove a continuous film of 2D material from a 200 µm × 200 µm substrate area in less than 3 s. Since two-photon 3D printers are becoming increasingly available in research laboratories and industrial facilities, we expect this method to enable fast prototyping of devices based on 2D materials across various research areas.

4.
Adv Sci (Weinh) ; 9(22): e2201272, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35652199

RESUMO

PtSe2 is one of the most promising materials for the next generation of piezoresistive sensors. However, the large-scale synthesis of homogeneous thin films with reproducible electromechanical properties is challenging due to polycrystallinity. It is shown that stacking phases other than the 1T phase become thermodynamically available at elevated temperatures that are common during synthesis. It is shown that these phases can make up a significant fraction in a polycrystalline thin film and discuss methods to characterize them, including their Seebeck coefficients. Lastly, their gauge factors, which vary strongly and heavily impact the performance of a nanoelectromechanical device are estimated.

5.
ACS Photonics ; 9(3): 859-867, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35308407

RESUMO

Low-cost, easily integrable photodetectors (PDs) for silicon (Si) photonics are still a bottleneck for photonic-integrated circuits (PICs), especially for wavelengths above 1.8 µm. Multilayered platinum diselenide (PtSe2) is a semi-metallic two-dimensional (2D) material that can be synthesized below 450 °C. We integrate PtSe2-based PDs directly by conformal growth on Si waveguides. The PDs operate at 1550 nm wavelength with a maximum responsivity of 11 mA/W and response times below 8.4 µs. Fourier-transform IR spectroscopy in the wavelength range from 1.25 to 28 µm indicates the suitability of PtSe2 for PDs far into the IR wavelength range. Our PtSe2 PDs integrated by direct growth outperform PtSe2 PDs manufactured by standard 2D layer transfer. The combination of IR responsivity, chemical stability, selective and conformal growth at low temperatures, and the potential for high carrier mobility makes PtSe2 an attractive 2D material for optoelectronics and PICs.

6.
Nanoscale ; 13(15): 7403-7411, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889876

RESUMO

Group-10 transition metal dichalcogenides (TMDs) are rising in prominence within the highly innovative field of 2D materials. While PtS2 has been investigated for potential electronic applications, due to its high charge-carrier mobility and strongly layer-dependent bandgap, it has proven to be one of the more difficult TMDs to synthesise. In contrast to most TMDs, Pt has a significantly more stable monosulfide, the non-layered PtS. The existence of two stable platinum sulfides, sometimes within the same sample, has resulted in much confusion between the materials in the literature. Neither of these Pt sulfides have been thoroughly characterised as-of-yet. Here we utilise time-efficient, scalable methods to synthesise high-quality thin films of both Pt sulfides on a variety of substrates. The competing nature of the sulfides and limited thermal stability of these materials is demonstrated. We report peak-fitted X-ray photoelectron spectra, and Raman spectra using a variety of laser wavelengths, for both materials. This systematic characterisation provides a guide to differentiate between the sulfides using relatively simple methods which is essential to enable future work on these interesting materials.

7.
Nat Commun ; 12(1): 917, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568669

RESUMO

Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to [Formula: see text]. Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.

8.
ACS Appl Mater Interfaces ; 12(30): 34049-34057, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32618182

RESUMO

Grain boundaries in two-dimensional (2D) material layers have an impact on their electrical, optoelectronic, and mechanical properties. Therefore, the availability of simple large-area characterization approaches that can directly visualize grains and grain boundaries in 2D materials such as molybdenum disulfide (MoS2) is critical. Previous approaches for visualizing grains and grain boundaries in MoS2 are typically based on atomic resolution microscopy or optical imaging techniques (i.e., Raman spectroscopy or photoluminescence), which are complex or limited to the characterization of small, micrometer-sized areas. Here, we show a simple approach for an efficient large-area visualization of the grain boundaries in continuous chemical vapor-deposited films and domains of MoS2 that are grown on a silicon dioxide (SiO2) substrate. In our approach, the MoS2 layer on a SiO2/Si substrate is exposed to vapor hydrofluoric acid (VHF), resulting in the differential etching of SiO2 at the MoS2 grain boundaries and SiO2 underneath the MoS2 grains as a result of VHF diffusing through the defects in the MoS2 layer at the grain boundaries. The location of the grain boundaries can be seen by the resulting SiO2 pattern using optical microscopy, scanning electron microscopy, or Raman spectroscopy. This method allows for a simple and rapid evaluation of grain sizes in 2D material films over large areas, thereby potentially facilitating the optimization of synthesis processes and advancing applications of 2D materials in science and technology.

9.
ACS Omega ; 5(11): 5959-5963, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226876

RESUMO

Two-dimensional materials (2DMs) have high potential in gas sensing, due to their large surface-to-volume ratio. However, most sensors based on 2DMs suffer from the lack of a steady state during gas exposure, hampering sensor calibration. Here, we demonstrate that analysis of the time differential of the signal output enables the calibration of chemiresistors based on platinum or tungsten diselenide (PtSe2, WSe2) and molybdenum disulfide (MoS2), which present nonstationary behavior. 2DMs are synthesized by thermally assisted conversion of predeposited metals on a silicon/silicon dioxide substrate and therefore are integrable with standard complementary metal-oxide semiconductor (CMOS) technology. We analyze the behavior of the sensors at room temperature toward nitrogen dioxide (NO2) in a narrow range from 0.1 to 1 ppm. This study overcomes the problem of the absence of steady-state signals in 2DM gas sensors and thus facilitates their usage in this highly important application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...