Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 16(8): e1008783, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813693

RESUMO

Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities.


Assuntos
Antibiose , Candida albicans/fisiologia , Etanol/metabolismo , Fosfatos/metabolismo , Pseudomonas aeruginosa/fisiologia , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , Transcriptoma
2.
J Bacteriol ; 201(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527114

RESUMO

Pseudomonas aeruginosa has a broad metabolic repertoire that facilitates its coexistence with different microbes. Many microbes secrete products that P. aeruginosa can then catabolize, including ethanol, a common fermentation product. Here, we show that under oxygen-limiting conditions P. aeruginosa utilizes AdhA, an NAD-linked alcohol dehydrogenase, as a previously undescribed means for ethanol catabolism. In a rich medium containing ethanol, AdhA, but not the previously described PQQ-linked alcohol dehydrogenase, ExaA, oxidizes ethanol and leads to the accumulation of acetate in culture supernatants. AdhA-dependent acetate accumulation and the accompanying decrease in pH promote P. aeruginosa survival in LB-grown stationary-phase cultures. The transcription of adhA is elevated by hypoxia and under anoxic conditions, and we show that it is regulated by the Anr transcription factor. We have shown that lasR mutants, which lack an important quorum sensing regulator, have higher levels of Anr-regulated transcripts under low-oxygen conditions than their wild-type counterparts. Here, we show that a lasR mutant, when grown with ethanol, has an even larger decrease in pH than the wild type (WT) that is dependent on both anr and adhA The large increase in AdhA activity is similar to that of a strain expressing a hyperactive Anr-D149A variant. Ethanol catabolism in P. aeruginosa by AdhA supports growth on ethanol as a sole carbon source and electron donor in oxygen-limited settings and in cells growing by denitrification under anoxic conditions. This is the first demonstration of a physiological role for AdhA in ethanol oxidation in P. aeruginosaIMPORTANCE Ethanol is a common product of microbial fermentation, and the Pseudomonas aeruginosa response to and utilization of ethanol are relevant to our understanding of its role in microbial communities. Here, we report that the putative alcohol dehydrogenase AdhA is responsible for ethanol catabolism and acetate accumulation under low-oxygen conditions and that it is regulated by Anr.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Regulação Bacteriana da Expressão Gênica , Oxigênio/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Ácido Acético/metabolismo , Álcool Desidrogenase/genética , Anaerobiose/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Oxirredução , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Percepção de Quorum/genética , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
3.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109994

RESUMO

Pseudomonas aeruginosa frequently encounters microbes that produce ethanol. Low concentrations of ethanol reduced P. aeruginosa swim zone area by up to 45% in soft agar. The reduction of swimming by ethanol required the flagellar motor proteins MotAB and two PilZ domain proteins (FlgZ and PilZ). PilY1 and the type 4 pilus alignment complex (comprising PilMNOP) were previously implicated in MotAB regulation in surface-associated cells and were required for ethanol-dependent motility repression. As FlgZ requires the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) to represses motility, we screened mutants lacking genes involved in c-di-GMP metabolism and found that mutants lacking diguanylate cyclases SadC and GcbA were less responsive to ethanol. The double mutant was resistant to its effects. As published previously, ethanol also represses swarming motility, and the same genes required for ethanol effects on swimming motility were required for its regulation of swarming. Microscopic analysis of single cells in soft agar revealed that ethanol effects on swim zone area correlated with ethanol effects on the portion of cells that paused or stopped during the time interval analyzed. Ethanol increased c-di-GMP in planktonic wild-type cells but not in ΔmotAB or ΔsadC ΔgcbA mutants, suggesting c-di-GMP plays a role in the response to ethanol in planktonic cells. We propose that ethanol produced by other microbes induces a regulated decrease in P. aeruginosa motility, thereby promoting P. aeruginosa colocalization with ethanol-producing microbes. Furthermore, some of the same factors involved in the response to surface contact are involved in the response to ethanol.IMPORTANCE Ethanol is an important biologically active molecule produced by many bacteria and fungi. It has also been identified as a potential marker for disease state in cystic fibrosis. In line with previous data showing that ethanol promotes biofilm formation by Pseudomonas aeruginosa, here we report that ethanol reduces swimming motility using some of the same proteins involved in surface sensing. We propose that these data may provide insight into how microbes, via their metabolic byproducts, can influence P. aeruginosa colocalization in the context of infection and in other polymicrobial settings.


Assuntos
Etanol/farmacologia , Flagelos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Movimento
4.
J Bacteriol ; 201(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30936375

RESUMO

Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCEPseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.


Assuntos
Proteínas de Bactérias/metabolismo , Etanol/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Fator sigma/metabolismo , Trealose/biossíntese , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição , Transcrição Gênica , Trealose/análise
5.
PLoS Pathog ; 11(8): e1005133, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26317337

RESUMO

Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as biofilm formation and white-opaque switching. Previous studies have shown that hyphal growth is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibitors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects were observed in other Candida species. Consistent with there being a connection between respiratory activity and GTP-Ras1 binding, mutants lacking complex I or complex IV grew as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-binding was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased intracellular ATP concentrations and metabolomics analyses of cells grown with different respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content which suggested increased AMP kinase activity. Biochemical and genetic experiments provide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in response to decreased mitochondrial activity suggesting a revised model for Ras1 and Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem to form a master-regulatory complex necessary to integrate different environmental and intracellular signals, including metabolic status, to decide the fate of cellular morphology.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/patogenicidade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas ras/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Immunoblotting , Metabolômica , Dados de Sequência Molecular , Transcriptoma , Virulência/fisiologia
6.
PLoS Pathog ; 10(10): e1004480, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340349

RESUMO

In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF) and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP), and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.


Assuntos
Candida albicans/fisiologia , Etanol/farmacologia , Fenazinas/metabolismo , Biofilmes , Candidíase/prevenção & controle , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Humanos , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...