Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(4): 4803-4810, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258417

RESUMO

Hybrid ultramicroporous materials (HUMs), metal-organic platforms that incorporate inorganic pillars, are a promising class of porous solids. A key area of interest for such materials is gas separation, where HUMs have already established benchmark performances. Thanks to their ready compositional modularity, we report the design and synthesis of a new HUM, GEFSIX-21-Cu, incorporating the ligand pypz (4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, 21) and GeF62- pillaring anions. GEFSIX-21-Cu delivers on two fronts: first, it displays an exceptionally high C2H2 adsorption capacity (≥5 mmol g-1) which is paired with low uptake of CO2 (<2 mmol g-1), and, second, a low enthalpy of adsorption for C2H2 (ca. 32 kJ mol-1). This combination is rarely seen in the C2H2 selective physisorbents reported thus far, and not observed in related isostructural HUMs featuring pypz and other pillaring anions. Dynamic column breakthrough experiments for 1:1 and 2:1 C2H2/CO2 mixtures revealed GEFSIX-21-Cu to selectively separate C2H2 from CO2, yielding ≥99.99% CO2 effluent purities. Temperature-programmed desorption experiments revealed full sorbent regeneration in <35 min at 60 °C, reinforcing HUMs as potentially technologically relevant materials for strategic gas separations.

2.
Chem ; 7(11): 3085-3098, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34825106

RESUMO

The trade-off between selectivity and adsorption capacity with porous materials is a major roadblock to reducing the energy footprint of gas separation technologies. To address this matter, we report herein a systematic crystal engineering study of C2H2 removal from CO2 in a family of hybrid ultramicroporous materials (HUMs). The HUMs are composed of the same organic linker ligand, 4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, pypz, three inorganic pillar ligands, and two metal cations, thereby affording six isostructural pcu topology HUMs. All six HUMs exhibited strong binding sites for C2H2 and weaker affinity for CO2. The tuning of pore size and chemistry enabled by crystal engineering resulted in benchmark C2H2/CO2 separation performance. Fixed-bed dynamic column breakthrough experiments for an equimolar (v/v = 1:1) C2H2/CO2 binary gas mixture revealed that one sorbent, SIFSIX-21-Ni, was the first C2H2 selective sorbent that combines exceptional separation selectivity (27.7) with high adsorption capacity (4 mmol·g-1).

3.
Dalton Trans ; 49(47): 17433-17439, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33226039

RESUMO

Hybrid Ultramicroporous Materials (HUMs) are porous coordination materials with exemplary gas sorption and separation characteristics, but relatively poor thermal stability when compared to other porous coordination polymers or metal-organic frameworks (MOFs). The origin of this poor thermal stability has not yet been experimentally verified. Therefore, we investigate the thermal decomposition mechanisms of representative HUMs with the general formulae [M(SiF6)(L)2] or [M(SiF6)(L)(H2O)2], where M = Ni(ii), Cu(ii) or Zn(ii) and L = pyrazine or 4,4'-bipyridine. We find that two decomposition mechanisms dominate: (i) the fragmentation of the XF62- pillar into gaseous XF4 and fluoride, and (ii) direct sublimation of the N-donor ligand. The former process dictates the overall thermal stability of the material. We also demonstrate that HF is a possible decomposition product from certain hydrated HUM materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...