Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 217(9): 3285-3300, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29959232

RESUMO

Drosophila melanogaster neural stem cells (neuroblasts [NBs]) divide asymmetrically by differentially segregating protein determinants into their daughter cells. Although the machinery for asymmetric protein segregation is well understood, the events that reprogram one of the two daughter cells toward terminal differentiation are less clear. In this study, we use time-resolved transcriptional profiling to identify the earliest transcriptional differences between the daughter cells on their way toward distinct fates. By screening for coregulated protein complexes, we identify vacuolar-type H+-ATPase (v-ATPase) among the first and most significantly down-regulated complexes in differentiating daughter cells. We show that v-ATPase is essential for NB growth and persistent activity of the Notch signaling pathway. Our data suggest that v-ATPase and Notch form a regulatory loop that acts in multiple stem cell lineages both during nervous system development and in the adult gut. We provide a unique resource for investigating neural stem cell biology and demonstrate that cell fate changes can be induced by transcriptional regulation of basic, cell-essential pathways.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Transcrição Gênica/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Transdução de Sinais , Transcriptoma/genética
2.
Elife ; 72018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580384

RESUMO

Tumor cells display features that are not found in healthy cells. How they become immortal and how their specific features can be exploited to combat tumorigenesis are key questions in tumor biology. Here we describe the long non-coding RNA cherub that is critically required for the development of brain tumors in Drosophila but is dispensable for normal development. In mitotic Drosophila neural stem cells, cherub localizes to the cell periphery and segregates into the differentiating daughter cell. During tumorigenesis, de-differentiation of cherub-high cells leads to the formation of tumorigenic stem cells that accumulate abnormally high cherub levels. We show that cherub establishes a molecular link between the RNA-binding proteins Staufen and Syncrip. As Syncrip is part of the molecular machinery specifying temporal identity in neural stem cells, we propose that tumor cells proliferate indefinitely, because cherub accumulation no longer allows them to complete their temporal neurogenesis program.


Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica , Células-Tronco Neoplásicas/fisiologia , Células-Tronco Neurais/fisiologia , RNA Longo não Codificante/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo
3.
Genome Biol ; 14(11): r133, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24289286

RESUMO

BACKGROUND: Genome-wide transcriptome analyses have given systems-level insights into gene regulatory networks. Due to the limited depth of quantitative proteomics, however, our understanding of post-transcriptional gene regulation and its effects on protein-complex stoichiometry are lagging behind. RESULTS: Here, we employ deep sequencing and the isobaric tag for relative and absolute quantification (iTRAQ) technology to determine transcript and protein expression changes of a Drosophila brain tumor model at near genome-wide resolution. In total, we quantify more than 6,200 tissue-specific proteins, corresponding to about 70% of all transcribed protein-coding genes. Using our integrated data set, we demonstrate that post-transcriptional gene regulation varies considerably with biological function and is surprisingly high for genes regulating transcription. We combine our quantitative data with protein-protein interaction data and show that post-transcriptional mechanisms significantly enhance co-regulation of protein-complex subunits beyond transcriptional co-regulation. Interestingly, our results suggest that only about 11% of the annotated Drosophila protein complexes are co-regulated in the brain. Finally, we refine the composition of some of these core protein complexes by analyzing the co-regulation of potential subunits. CONCLUSIONS: Our comprehensive transcriptome and proteome data provide a valuable resource for quantitative biology and offer novel insights into understanding post-transcriptional gene regulation in a tumor model.


Assuntos
Neoplasias Encefálicas/genética , Drosophila/genética , Genoma de Inseto , Processamento de Proteína Pós-Traducional/genética , Proteoma/genética , Transcriptoma , Animais , Biologia Computacional , Dano ao DNA , Reparo do DNA , Replicação do DNA , Regulação para Baixo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Transcrição Gênica , Regulação para Cima
4.
Nat Protoc ; 8(6): 1088-1099, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23660757

RESUMO

Elegant tools are available for the genetic analysis of neural stem cell lineages in Drosophila, but a methodology for purifying stem cells and their differentiated progeny for transcriptome analysis is currently missing. Previous attempts to overcome this problem either involved using RNA isolated from whole larval brain tissue or co-transcriptional in vivo mRNA tagging. As both methods have limited cell type specificity, we developed a protocol for the isolation of Drosophila neural stem cells (neuroblasts, NBs) and their differentiated sibling cells by FACS. We dissected larval brains from fly strains expressing GFP under the control of a NB lineage-specific GAL4 line. Upon dissociation, we made use of differences in GFP intensity and cell size to separate NBs and neurons. The resulting cell populations are over 98% pure and can readily be used for live imaging or gene expression analysis. Our method is optimized for neural stem cells, but it can also be applied to other Drosophila cell types. Primary cell suspensions and sorted cell populations can be obtained within 1 d; material for deep-sequencing library preparation can be obtained within 4 d.


Assuntos
Drosophila/citologia , Citometria de Fluxo/métodos , Células-Tronco Neurais/citologia , Animais , Técnicas de Cultura de Células/métodos , Proteínas de Fluorescência Verde/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Larva/citologia
5.
Cell Rep ; 2(2): 407-18, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22884370

RESUMO

Drosophila neuroblasts (NBs) have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted NB-specific transcription factors that can be arranged in a network containing hubs for Notch signaling, growth control, and chromatin regulation. Overexpression and RNA interference for these factors identify Klumpfuss as a regulator of self-renewal. We show that loss of Klumpfuss function causes premature differentiation and that overexpression results in the formation of transplantable brain tumors. Our data represent a valuable resource for investigating Drosophila developmental neurobiology, and the described method can be applied to other invertebrate stem cell lineages as well.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/fisiologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Animais , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Células-Tronco Neurais/citologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...