Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4570, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516779

RESUMO

Ethylene glycol is a widely utilized commodity chemical, the production of which accounts for over 46 million tons of CO2 emission annually. Here we report a paired electrocatalytic approach for ethylene glycol production from methanol. Carbon catalysts are effective in reducing formaldehyde into ethylene glycol with a 92% Faradaic efficiency, whereas Pt catalysts at the anode enable formaldehyde production through methanol partial oxidation with a 75% Faradaic efficiency. With a membrane-electrode assembly configuration, we show the feasibility of ethylene glycol electrosynthesis from methanol in a single electrolyzer. The electrolyzer operates a full cell voltage of 3.2 V at a current density of 100 mA cm-2, with a 60% reduction in energy consumption. Further investigations, using operando flow electrolyzer mass spectroscopy, isotopic labeling, and density functional theory (DFT) calculations, indicate that the desorption of a *CH2OH intermediate is the crucial step in determining the selectively towards ethylene glycol over methanol.

2.
Annu Rev Chem Biomol Eng ; 14: 165-185, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36888993

RESUMO

Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure-activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO2/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques.


Assuntos
Dióxido de Carbono , Dióxido de Carbono/química , Elétrons , Espectrometria de Massas , Catálise
3.
J Am Chem Soc ; 144(3): 1258-1266, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014265

RESUMO

Mitigating nitrogen oxide (NOx) emissions is critical to tackle global warming and improve air quality. Conventional NOx abatement technologies for emission control suffer from a low efficiency at near ambient temperatures. Herein, we show an electrochemical pathway to reduce gaseous NOx that can be conducted at high reaction rates (400 mA cm-2) under ambient conditions. Various transition metals are evaluated for electrochemical reduction of NO and N2O to reveal the role of electrocatalyst in determining the product selectivity. Specifically, Cu is highly selective toward NH3 formation with >80% Faradaic efficiency in NO electroreduction. Furthermore, the partial pressure study of NO electroreduction revealed that a high NO coverage facilitates the N-N coupling reaction. In acidic electrolytes, the formation of NH3 is greatly favored, whereas the N2 production is suppressed. Additional mechanistic studies were conducted by using flow electrochemical mass spectrometry to gain further insights into reaction pathways. This work provides a promising avenue toward abating gaseous NOx emissions at ambient conditions by using renewable electricity.

4.
Nat Commun ; 12(1): 1949, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782400

RESUMO

Electrifying chemical manufacturing using renewable energy is an attractive approach to reduce the dependence on fossil energy sources in chemical industries. Primary amines are important organic building blocks; however, the synthesis is often hindered by the poor selectivity because of the formation of secondary and tertiary amine byproducts. Herein, we report an electrocatalytic route to produce ethylamine selectively through an electroreduction of acetonitrile at ambient temperature and pressure. Among all the electrocatalysts, Cu nanoparticles exhibit the highest ethylamine Faradaic efficiency (~96%) at -0.29 V versus reversible hydrogen electrode. Under optimal conditions, we achieve an ethylamine partial current density of 846 mA cm-2. A 20-hour stable performance is demonstrated on Cu at 100 mA cm-2 with an 86% ethylamine Faradaic efficiency. Moreover, the reaction mechanism is investigated by computational study, which suggests the high ethylamine selectivity on Cu is due to the moderate binding affinity for the reaction intermediates.

5.
Angew Chem Int Ed Engl ; 60(6): 3277-3282, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090694

RESUMO

Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch-type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas-diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm-2 ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as-formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n-propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.

6.
Nat Commun ; 11(1): 5856, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203886

RESUMO

The electroreduction of carbon dioxide offers a promising avenue to produce valuable fuels and chemicals using greenhouse gas carbon dioxide as the carbon feedstock. Because industrial carbon dioxide point sources often contain numerous contaminants, such as nitrogen oxides, understanding the potential impact of contaminants on carbon dioxide electrolysis is crucial for practical applications. Herein, we investigate the impact of various nitrogen oxides, including nitric oxide, nitrogen dioxide, and nitrous oxide, on carbon dioxide electroreduction on three model electrocatalysts (i.e., copper, silver, and tin). We demonstrate that the presence of nitrogen oxides (up to 0.83%) in the carbon dioxide feed leads to a considerable Faradaic efficiency loss in carbon dioxide electroreduction, which is caused by the preferential electroreduction of nitrogen oxides over carbon dioxide. The primary products of nitrogen oxides electroreduction include nitrous oxide, nitrogen, hydroxylamine, and ammonia. Despite the loss in Faradaic efficiency, the electrocatalysts exhibit similar carbon dioxide reduction performances once a pure carbon dioxide feed is restored, indicating a negligible long-term impact of nitrogen oxides on the catalytic properties of the model catalysts.

7.
Front Chem ; 6: 523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30460227

RESUMO

Minimizing Pt loading is essential for designing cost-effective water electrolyzers and fuel cell systems. Recently, three-dimensional macroporous open-pore electroactive supports have been widely regarded as promising architectures to lower loading amounts of Pt because of its large surface area, easy electrolyte access to Pt sites, and superior gas diffusion properties to accelerate diffusion of H2 bubbles from the Pt surface. However, studies to date have mainly focused on Pt loading on Ni-based 3D open pore supports which are prone to corrosion in highly acidic and alkaline conditions. Here, we investigate electrodeposition of Pt nanoparticles in low-loading amounts on commercially available, inexpensive, 3D carbon foam (CF) support and benchmark their activity and stability for electrolytic hydrogen production. We first elucidate the effect of deposition potential on the Pt nanoparticle size, density and subsequently its coverage on 3D CF. Analysis of the Pt deposit using scanning electron microscopy images reveal that for a given deposition charge density, the particle density increases (with cubic power) and particle size decreases (linearly) with deposition overpotential. A deposition potential of -0.4 V vs. standard calomel electrode (SCE) provided the highest Pt nanoparticle coverage on 3D CF surface. Different loading amounts of Pt (0.0075-0.1 mgPt/cm2) was then deposited on CF at -0.4 V vs. SCE and subsequently studied for its hydrogen evolution reaction (HER) activity in acidic 1M H2SO4 electrolyte. The Pt/CF catalyst with loading amounts as low as 0.06 mgPt/cm2 (10-fold lower than state-of-the-art commercial electrodes) demonstrated a mass activity of 2.6 ampere per milligram Pt at 200 mV overpotential, nearly 6-fold greater than the commercial Pt/C catalyst tested under similar conditions. The 3D architectured electrode also demonstrated excellent stability, showing <7% loss in activity after 60 h of constant current water electrolysis at 100 mA/cm2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...