Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3652, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714661

RESUMO

Materials following Murray's law are of significant interest due to their unique porous structure and optimal mass transfer ability. However, it is challenging to construct such biomimetic hierarchical channels with perfectly cylindrical pores in synthetic systems following the existing theory. Achieving superior mass transport capacity revealed by Murray's law in nanostructured materials has thus far remained out of reach. We propose a Universal Murray's law applicable to a wide range of hierarchical structures, shapes and generalised transfer processes. We experimentally demonstrate optimal flow of various fluids in hierarchically planar and tubular graphene aerogel structures to validate the proposed law. By adjusting the macroscopic pores in such aerogel-based gas sensors, we also show a significantly improved sensor response dynamics. In this work, we provide a solid framework for designing synthetic Murray materials with arbitrarily shaped channels for superior mass transfer capabilities, with future implications in catalysis, sensing and energy applications.

3.
Nat Commun ; 15(1): 1656, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472219

RESUMO

The rapid development of organic-inorganic hybrid perovskite solar cells has resulted in laboratory-scale devices having power conversion efficiencies that are competitive with commercialised technologies. However, hybrid perovskite solar cells are yet to make an impact beyond the research community, with translation to large-area devices fabricated by industry-relevant manufacturing methods remaining a critical challenge. Here we report the first demonstration of hybrid perovskite solar cell modules, comprising serially-interconnected cells, produced entirely using industrial roll-to-roll printing tools under ambient room conditions. As part of this development, costly vacuum-deposited metal electrodes are replaced with printed carbon electrodes. A high-throughput experiment involving the analysis of batches of 1600 cells produced using 20 parameter combinations enabled rapid optimisation over a large parameter space. The optimised roll-to-roll fabricated hybrid perovskite solar cells show power conversion efficiencies of up to 15.5% for individual small-area cells and 11.0% for serially-interconnected cells in large-area modules. Based on the devices produced in this work, a cost of ~0.7 USD W-1 is predicted for a production rate of 1,000,000 m² per year in Australia, with potential for further significant cost reductions.

4.
Sci Adv ; 10(6): eadk6856, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335291

RESUMO

Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.

5.
Nat Commun ; 15(1): 571, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233431

RESUMO

Miniaturized spectrometers are of immense interest for various on-chip and implantable photonic and optoelectronic applications. State-of-the-art conventional spectrometer designs rely heavily on bulky dispersive components (such as gratings, photodetector arrays, and interferometric optics) to capture different input spectral components that increase their integration complexity. Here, we report a high-performance broadband spectrometer based on a simple and compact van der Waals heterostructure diode, leveraging a careful selection of active van der Waals materials- molybdenum disulfide and black phosphorus, their electrically tunable photoresponse, and advanced computational algorithms for spectral reconstruction. We achieve remarkably high peak wavelength accuracy of ~2 nanometers, and broad operation bandwidth spanning from ~500 to 1600 nanometers in a device with a ~ 30×20 µm2 footprint. This diode-based spectrometer scheme with broadband operation offers an attractive pathway for various applications, such as sensing, surveillance and spectral imaging.

6.
Nat Mater ; 22(11): 1294-1303, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500958

RESUMO

Textiles represent a fundamental material format that is extensively integrated into our everyday lives. The quest for more versatile and body-compatible wearable electronics has led to the rise of electronic textiles (e-textiles). By enhancing textiles with electronic functionalities, e-textiles define a new frontier of wearable platforms for human augmentation. To realize the transformational impact of wearable e-textiles, materials innovations can pave the way for effective user adoption and the creation of a sustainable circular economy. We propose a repair, recycle, replacement and reduction circular e-textile paradigm. We envisage a systematic design framework embodying material selection and biofabrication concepts that can unify environmental friendliness, market viability, supply-chain resilience and user experience quality. This framework establishes a set of actionable principles for the industrialization and commercialization of future sustainable e-textile products.

7.
Adv Mater ; 35(20): e2210068, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36852617

RESUMO

Multienergy X-ray detection is critical to effectively differentiate materials in a variety of diagnostic radiology and nondestructive testing applications. Silicon and selenium X-ray detectors are the most common for multienergy detection; however, these present poor energy discrimination across the broad X-ray spectrum and exhibit limited spatial resolution due to the high thicknesses required for radiation attenuation. Here, an X-ray detector based on solution-processed thin-film metal halide perovskite that overcomes these challenges is introduced. By harnessing an optimized n-i-p diode configuration, operation is achieved across a broad range of soft and hard X-ray energies stemming from 0.1 to 10's of keV. Through detailed experimental and simulation work, it is shown that optimized Cs0.1 FA0.9 PbI3 perovskites effectively attenuate soft and hard X-rays, while also possessing excellent electrical properties to result in X-ray detectors with high sensitivity factors that exceed 5 × 103 µ C G y Vac - 1 cm - 2 $\mu {\rm{C}}\;{{\bf Gy}}_{{\rm{Vac}}}^{ - 1}\;{\rm{c}}{{\rm{m}}^{ - 2}}$ and 6 × 104 µC Gy-1 cm-2 within soft and hard X-ray regimes, respectively. Harnessing the solution-processable nature of the perovskites, roll-to-roll printable X-ray detectors on flexible substrates are also demonstrated.

8.
Sci Adv ; 9(4): eadf1141, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696510

RESUMO

Materials with programmable conductivity and stiffness offer new design opportunities for next-generation engineered systems in soft robotics and electronic devices. However, existing approaches fail to harness variable electrical and mechanical properties synergistically and lack the ability to self-respond to environmental changes. We report an electro-mechano responsive Field's metal hybrid elastomer exhibiting variable and tunable conductivity, strain sensitivity, and stiffness. By synergistically harnessing these properties, we demonstrate two applications with over an order of magnitude performance improvement compared to state-of-the-art, including a self-triggered multiaxis compliance compensator for robotic manipulators, and a resettable, highly compact, and fast current-limiting fuse with an adjustable fusing current. We envisage that the extraordinary electromechanical properties of our hybrid elastomer will bring substantial advancements in resilient robotic systems, intelligent instruments, and flexible electronics.

9.
Sci Adv ; 8(49): eabq8246, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490340

RESUMO

The ever-growing demand for faster and more efficient data transfer and processing has brought optical computation strategies to the forefront of research in next-generation computing. Here, we report a universal computing approach with the chirality degree of freedom. By exploiting the crystal symmetry-enabled well-known chiral selection rules, we demonstrate the viability of the concept in bulk silica crystals and atomically thin semiconductors and create ultrafast (<100-fs) all-optical chirality logic gates (XNOR, NOR, AND, XOR, OR, and NAND) and a half adder. We also validate the unique advantages of chirality gates by realizing multiple gates with simultaneous operation in a single device and electrical control. Our first demonstrations of logic gates using chiral selection rules suggest that optical chirality could provide a powerful degree of freedom for future optical computing.

10.
Sci Adv ; 8(46): eadd4111, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383656

RESUMO

By simultaneously transducing and amplifying, transistors offer advantages over simpler, electrode-based transducers in electrochemical biosensors. However, transistor-based biosensors typically use static (i.e., DC) operation modes that are poorly suited for sensor architectures relying on the modulation of charge transfer kinetics to signal analyte binding. Thus motivated, here, we translate the AC "pulsed potential" approach typically used with electrochemical aptamer-based (EAB) sensors to an organic electrochemical transistor (OECT). Specifically, by applying a linearly sweeping square-wave potential to an aptamer-functionalized gate electrode, we produce current modulation across the transistor channel two orders of magnitude larger than seen for the equivalent, electrode-based biosensor. Unlike traditional EAB sensors, our aptamer-based OECT (AB-OECT) sensors critically maintain output current even with miniaturization. The pulsed transistor operation demonstrated here could be applied generally to sensors relying on kinetics-based signaling, expanding opportunities for noninvasive and high spatial resolution biosensing.

11.
Science ; 378(6617): 296-299, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264793

RESUMO

Miniaturized computational spectrometers, which can obtain incident spectra using a combination of device spectral responses and reconstruction algorithms, are essential for on-chip and implantable applications. Highly sensitive spectral measurement using a single detector allows the footprints of such spectrometers to be scaled down while achieving spectral resolution approaching that of benchtop systems. We report a high-performance computational spectrometer based on a single van der Waals junction with an electrically tunable transport-mediated spectral response. We achieve high peak wavelength accuracy (∼0.36 nanometers), high spectral resolution (∼3 nanometers), broad operation bandwidth (from ∼405 to 845 nanometers), and proof-of-concept spectral imaging. Our approach provides a route toward ultraminiaturization and offers unprecedented performance in accuracy, resolution, and operation bandwidth for single-detector computational spectrometers.

12.
Adv Mater ; 34(51): e2207371, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36217845

RESUMO

Brain-inspired neuromorphic computing systems with the potential to drive the next wave of artificial intelligence demand a spectrum of critical components beyond simple characteristics. An emerging research trend is to achieve advanced functions with ultracompact neuromorphic devices. In this work, a single-transistor neuron is demonstrated that implements excitatory-inhibitory (E-I) spatiotemporal integration and a series of essential neuron behaviors. Neuronal oscillations, the fundamental mode of neuronal communication, that construct high-dimensional population code to achieve efficient computing in the brain, can also be demonstrated by the neuron transistors. The highly scalable E-I neuron can be the basic building block for implementing core neuronal circuit motifs and large-scale architectural plans to replicate energy-efficient neural computations, forming the foundation of future integrated neuromorphic systems.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Neurônios
13.
Natl Sci Rev ; 9(7): nwac078, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35832774

RESUMO

The shuttle effect and excessive volume change of the sulfur cathode severely impede the industrial implementation of Li-S batteries. It is still highly challenging to find an efficient way to suppress the shuttle effect and volume expansion. Here, we report, for the first time, an innovative atomic orbital hybridization concept to construct the hierarchical hollow sandwiched sulfur nanospheres with double-polyaniline layers as the cathode material for large-scale high-performance Li-S batteries. This hierarchically 3D, cross-linked and stable sulfur-polyaniline backbone with interconnected disulfide bonds provides a new type and strong intrinsic chemical confinement of sulfur owing to the atomic orbital hybridization of Li 2s, S 3p, C 2p and N 2p. Crucially, such atomic orbital hybridization of sulfur sandwiched in the double sulfur-polyaniline network is highly reversible during the discharge/charge process and can very efficiently suppress the shuttle effect and volume expansion, contributing to a very high capacity of 1142 mAh g-1 and an excellent stabilized capacity of 886 mAh g-1 at 0.2 C after 500 cycles with a suppressed volume expansion and an unprecedented electrode integrity. This innovative atomic orbital hybridization concept can be extended to the preparation of other electrode materials to eliminate the shuttle effect and volume expansion in battery technologies. The present work also provides a commercially viable and up-scalable cathode material based on this strong and highly reversible atomic orbital hybridation for large-scale high-performance Li-S batteries.

14.
ACS Appl Mater Interfaces ; 14(26): 30410-30419, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758022

RESUMO

The triboelectric effect occurs when two dissimilar materials are in physical contact, attributed to the combination of contact electrification (CE) and electrostatic induction. It has been extensively explored for the development of high-performance triboelectric nanogenerators (TENGs). In this paper, we report on, besides the CE-related charge generation, an additional charge generation phenomenon associated with the modulation of the p-n junction when two semiconductor materials [methylammonium lead iodide (MAPI) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)] are put in contact and separated dynamically. The electrical outputs generated by the CE effect are determined by the surface potential difference between the two friction materials, while the ones induced by the p-n junction modulation are determined by the dynamic variations in the depletion widths of the two semiconductor friction materials. The outputs generated by the CE effect and the p-n junction effect are well separated in time scale; the p-n junction modulation contributes ∼20% of the total charge generated and could be varied by changing the chemical composition of the semiconductors. The results may provide an alternative method for the development of high-performance TENGs by utilizing this additional p-n junction modulation effect.

15.
Natl Sci Rev ; 8(4): nwaa097, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34691605

RESUMO

Like nanomaterials, bacteria have been unknowingly used for centuries. They hold significant economic potential for fuel and medicinal compound production. Their full exploitation, however, is impeded by low biological activity and stability in industrial reactors. Though cellular encapsulation addresses these limitations, cell survival is usually compromised due to shell-to-cell contacts and low permeability. Here, we report ordered packing of silica nanocolloids with organized, uniform and tunable nanoporosities for single cyanobacterium nanoencapsulation using protamine as an electrostatic template. A space between the capsule shell and the cell is created by controlled internalization of protamine, resulting in a highly ordered porous shell-void-cell structure formation. These unique yolk-shell nanostructures provide long-term cell viability with superior photosynthetic activities and resistance in harsh environments. In addition, engineering the colloidal packing allows tunable shell-pore diameter for size-dependent permeability and introduction of new functionalities for specific molecular recognition. Our strategy could significantly enhance the activity and stability of cyanobacteria for various nanobiotechnological applications.

16.
ACS Photonics ; 8(8): 2320-2328, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476288

RESUMO

All-optical control of nonlinear photonic processes in nanomaterials is of significant interest from a fundamental viewpoint and with regard to applications ranging from ultrafast data processing to spectroscopy and quantum technology. However, these applications rely on a high degree of control over the nonlinear response, which still remains elusive. Here, we demonstrate giant and broadband all-optical ultrafast modulation of second-harmonic generation (SHG) in monolayer transition-metal dichalcogenides mediated by the modified excitonic oscillation strength produced upon optical pumping. We reveal a dominant role of dark excitons to enhance SHG by up to a factor of ∼386 at room temperature, 2 orders of magnitude larger than the current state-of-the-art all-optical modulation results. The amplitude and sign of the observed SHG modulation can be adjusted over a broad spectral range spanning a few electronvolts with ultrafast response down to the sub-picosecond scale via different carrier dynamics. Our results not only introduce an efficient method to study intriguing exciton dynamics, but also reveal a new mechanism involving dark excitons to regulate all-optical nonlinear photonics.

17.
Chem Soc Rev ; 50(6): 3842-3888, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33522550

RESUMO

As an extraordinarily lightweight and porous functional nanomaterial family, aerogels have attracted considerable interest in academia and industry in recent decades. Despite the application scopes, the modest mechanical durability of aerogels makes their processing and operation challenging, in particular, for situations demanding intricate physical structures. "Bottom-up" additive manufacturing technology has the potential to address this drawback. Indeed, since the first report of 3D printed aerogels in 2015, a new interdisciplinary research area combining aerogel and printing technology has emerged to push the boundaries of structure and performance, further broadening their application scope. This review summarizes the state-of-the-art of printed aerogels and presents a comprehensive view of their developments in the past 5 years, and highlights the key near- and mid-term challenges.

18.
Science ; 371(6528)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33509998

RESUMO

Spectroscopic analysis is one of the most widely used analytical tools in scientific research and industry. Although laboratory benchtop spectrometer systems offer superlative resolution and spectral range, their miniaturization is crucial for applications where portability is paramount or where in situ measurements must be made. Advancement in this field over the past three decades is now yielding microspectrometers with performance and footprint near those viable for lab-on-a-chip systems, smartphones, and other consumer technologies. We summarize the technologies that have emerged toward achieving these aims-including miniaturized dispersive optics, narrowband filter systems, Fourier transform interferometers, and reconstructive microspectrometers-and discuss the challenges associated with improving spectral resolution while device dimensions shrink ever further.

19.
Opt Express ; 28(23): 34104-34110, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182887

RESUMO

We demonstrate an all-fiber, thulium-doped, mode-locked laser using a black phosphorus (BP) saturable absorber (SA). The BP-SA, exhibiting strong nonlinear response, is fabricated by inkjet printing. The oscillator generates self-starting 139 fs dispersion-managed soliton pulses centered at 1859nm with 55.6 nm spectral bandwidth. This is the shortest pulse duration and widest spectral bandwidth achieved directly from an all-fiber thulium-doped fiber laser mode-locked with a nanomaterial saturable absorber to date. Our findings demonstrate the applicability of BP for femtosecond pulse generation at 2 µm spectral region.

20.
Adv Funct Mater ; 30(31): 2002339, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32774201

RESUMO

Solution-processable thin-film dielectrics represent an important material family for large-area, fully-printed electronics. Yet, in recent years, it has seen only limited development, and has mostly remained confined to pure polymers. Although it is possible to achieve excellent printability, these polymers have low (≈2-5) dielectric constants (ε r ). There have been recent attempts to use solution-processed 2D hexagonal boron nitride (h-BN) as an alternative. However, the deposited h-BN flakes create porous thin-films, compromising their mechanical integrity, substrate adhesion, and susceptibility to moisture. These challenges are addressed by developing a "one-pot" formulation of polyurethane (PU)-based inks with h-BN nano-fillers. The approach enables coating of pinhole-free, flexible PU+h-BN dielectric thin-films. The h-BN dispersion concentration is optimized with respect to exfoliation yield, optical transparency, and thin-film uniformity. A maximum ε r ≈ 7.57 is achieved, a two-fold increase over pure PU, with only 0.7 vol% h-BN in the dielectric thin-film. A high optical transparency of ≈78.0% (≈0.65% variation) is measured across a 25 cm2 area for a 10 µm thick dielectric. The dielectric property of the composite is also consistent, with a measured areal capacitance variation of <8% across 64 printed capacitors. The formulation represents an optically transparent, flexible thin-film, with enhanced dielectric constant for printed electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...