Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 340: 139826, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586487

RESUMO

To enhance nutrient removal from low-strength municipal wastewater in a continuous-flow activated sludge (CFAS) process using aerobic granular sludge (AGS) augmentation strategy, a pilot-scale demonstration was configured with a mainstream reactor (anaerobic/aerobic process) and a sidestream sequencing batch reactor for AGS production. The aeration of the mainstream reactor was controlled based on dissolved oxygen (DO) and ammonium concentrations during Phases I and II-III, respectively. During Phase III, an anoxic zone was created in the mainstream aerobic tank. Throughout the demonstration period, excellent sludge settleability in the mainstream reactor (SVI30 ≤ 80 mL g-1) under long sludge retention time conditions (≥12 d) allowed the maintenance of a high mixed liquor suspended solids concentration (≥3000 mg L-1). The total nitrogen (TN) removal ratio improved significantly during Phases II and III (49.3 ± 4.1% and 50.1 ± 10.2%, respectively) compared to Phase I (43.2 ± 5.5%). Low DO concentration (< 0.5 mg L-1) by the ammonium-based aeration tended to increase the simultaneous nitrification and denitrification efficiency (> 40%), enhancing TN removal (> 50%). The reduction of DO and nitrate concentrations in the returning sludge liquor can stabilize phosphorus removal (approximately 80% of the 25th percentile). In addition, the aeration efficiency during Phase III decreased by 26-29% compared to Phase I. These results suggest that the introduction of ammonium-based aeration control to the CFAS using the AGS augmentation strategy could contribute to superior sewerage treatment, including nutrient removal and a low carbon footprint.


Assuntos
Compostos de Amônio , Esgotos , Reatores Biológicos , Águas Residuárias , Nitrificação , Fósforo , Nitrogênio , Desnitrificação , Eliminação de Resíduos Líquidos/métodos
2.
FEMS Microbiol Lett ; 367(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32037440

RESUMO

In artificial engineered systems, nitrification is a key reaction that accounts for the removal of biological nitrogen. Recently, a single microbe capable of oxidizing ammonia to nitrate, known as a complete ammonia oxidizer (comammox), has been discovered. Although the abundance and diversity of comammox Nitrospira in engineered systems have been identified through molecular-based approaches, the enrichment and isolation of comammox Nitrospira remains a challenge. Therefore, the aim of this study was to enrich comammox Nitrospira from nitrifying granules, which were used to increase the efficiency of biological nitrogen removal in wastewater treatment plants. We sought to accomplish this through the use of a fixed-bed continuous feeding bioreactor. Fluorescence in situ hybridization, 16S rRNA gene amplicon sequencing and qPCR of functional genes were utilized to monitor the growth of nitrifiers including comammox Nitrospira. Cloning of comammox amoA genes identified amoA phylogeny of enriched comammox Nitrospira. This work is an example demonstrating that continuous supply of low ammonium concentrations alongside biomass carriers is effective in cultivating comammox Nitrospira from engineered systems.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Genes Bacterianos/genética , RNA Ribossômico 16S/genética , Purificação da Água
3.
Water Sci Technol ; 76(11-12): 3171-3180, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29210703

RESUMO

Nitrifying granules have a high sedimentation property and an ability to maintain a large amount of nitrifying bacteria in a reaction tank. Our group has examined the formation process of nitrifying granules and achieved high-rate nitrification for an inorganic synthetic wastewater using these granules. In this research, a pilot-scale test plant with an 850-liter reaction tank was assembled in a semiconductor manufacturing factory in order to conduct a continuous water conduction test using real electronics industry wastewater. The aim was to observe the formation of nitrifying granules and determine the maximum ammonia removal rate. The average granule diameter formed during the experiment was 780 µm and the maximum ammonia removal rate was observed to be 1.5 kgN·m-3·day-1 at 20 °C, which is 2.5-5 times faster than traditional activated sludge methods. A fluorescence in situ hybridization analysis showed that ß-proteobacterial ammonia oxidizing bacteria and the Nitrospira-like nitrite-oxidizing bacteria dominate the bacteria population in the granules, and their strong aggregation capacity might confer some benefits to the formation of these nitrifying granules.


Assuntos
Amônia/química , Reatores Biológicos/microbiologia , Resíduo Eletrônico/análise , Resíduos Industriais/análise , Águas Residuárias/química , Bactérias , Nitrificação , Nitritos , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...