Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38679645

RESUMO

The photophysical behaviors of benzimidazolium derivative [4-(1,3-dimethylbenzimidazol-3-imu-2-yl)-N, N-diphenylaniline (2-(4-(diphenylamino)phenyl)-1,3-dimethyl-1H-benzo[d]imidazol-3-ium)] (BID) in water, organic solvents and on synthetic saponite were investigated. The fluorescence quantum yield (Φf) of BID was 0.91 on the saponite surface under the optimal condition, while that in water was 0.010. Such fluorescence enhancement on the inorganic surface is called "surface-fixation induced emission (S-FIE)". This fluorescence enhancement ratio for BID is significantly high compared to that of conventional S-FIE active dyes. From the values of Φf and the excited lifetime, the non-radiative deactivation rate constant (knr) and radiative deactivation rate constant (kf) of BID on the saponite surface and in water were determined. Results showed that the factors for fluorescence enhancement were both the increase of kf and the decrease of knr on the saponite surface; especially, knr decreased by more than two orders due to the effect of nanosheets.

3.
J Am Chem Soc ; 145(18): 10236-10248, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37127911

RESUMO

Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory calculations, transient absorption spectroscopy, and reduction reactions of selected substrates. The results show that irradiation of BI+-PhNAr2 promotes photoinduced intramolecular electron transfer to form a long-lived (∼300 µs) charge shifted state (BI•-PhN•+Ar2). In the pathway for photocatalysis of reduction reactions of substrates, BI•-PhN•+Ar2 is subsequently transformed to the neutral benzimidazolyl radical (BI•-PhNAr2) by single-electron transfer from the donor 1,3-dimethyl-2-phenylbenzimidazoline (BIH-Ph) serving as a cooperative agent. Among the benzimidazoliums explored, the bromo-substituted analogue BI+-PhN(C6H4Br-p)2 in conjunction with BIH-Ph demonstrates the most consistent catalytic performance.

4.
ACS Omega ; 7(5): 4655-4666, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155957

RESUMO

A new photocatalytic system was developed for carrying out desulfonylative α-oxyamination reactions of α-sulfonylketones in which α-ketoalkyl radicals are generated. The catalytic system is composed of benzimidazolium aryloxide betaines (BI+-ArO-), serving as visible light-absorbing electron donor photocatalysts, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), playing dual roles as an electron donor for catalyst recycling and a reagent to capture the generated radical intermediates. Information about the detailed nature of BI+-ArO- and the photocatalytic processes with TEMPO was gained using absorption spectroscopy, electrochemical measurements, and density functional theory calculations.

5.
Chem Commun (Camb) ; 57(15): 1915-1918, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33496294

RESUMO

N-Sulfonylated [3]catenanes, which exist as two translational isomers, were synthesized. The X-ray crystal structure of the distal isomer of [3]catenane, which has higher symmetry, revealed hydrogen bonds involving the carboxylic acid moieties on the terminal rings. The thermodynamic parameters of the isomerization revealed that this hydrogen bonding influenced the isomerization process.

6.
J Org Chem ; 86(3): 2556-2569, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33492136

RESUMO

Desulfonylation reactions of α-sulfonylketones promoted by photoinduced electron transfer with 2-hydroxyarylbenzimidazolines (BIH-ArOH) were investigated. Under aerobic conditions, photoexcited 2-hydroxynaphthylbenzimidazoline (BIH-NapOH) promotes competitive reduction (forming alkylketones) and oxidation (producing α-hydroxyketones) of sulfonylketones through pathways involving the intermediacy of α-ketoalkyl radicals. The results of an examination of the effects of solvents, radical trapping reagents, substituents of sulfonylketones, and a variety of hydroxyaryl- and aryl-benzimidazolines (BIH-ArOH and BIH-Ar) suggest that the oxidation products are produced by dissociation of α-ketoalkyl radicals from the initially formed solvent-caged radical ion pairs followed by reaction with molecular oxygen. In addition, the observations indicate that the reduction products are generated by proton or hydrogen atom transfer in solvent-caged radical ion pairs derived from benzimidazolines and sulfonylketones. The results also suggest that arylsulfinate anions arising by carbon-sulfur bond cleavage of sulfonylketone radical anions act as reductants in the oxidation pathway to convert initially formed α-hydroperoxyketones to α-hydroxyketones. Finally, density functional theory calculations were performed to explore the structures and properties of radical ions of sulfonylketones as well as BIH-NapOH.


Assuntos
Elétrons , Hidrogênio , Transporte de Elétrons , Oxirredução , Oxigênio
7.
ACS Omega ; 5(13): 7651-7665, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280909

RESUMO

A debrominative oxygenation protocol has been developed for the conversion of α-bromo-α,α-dialkyl-substituted carbonyl compounds to their corresponding α-hydroxy analogues. For example, stirring a solution of α-bromoisobutyrophenone and 2-aryl-1,3-dimethylbenzimidazoline (BIH-Ar) at room temperature under an air atmosphere leads to the efficient formation of α-hydroperoxyisobutyrophenone, which can be converted to α-hydroxyisobutyrophenone using Me2S reduction. In contrast, reaction of α-bromoacetophenone under the same conditions produces the α-hydrogenated product acetophenone. α-Keto-alkyl and benzimidazolyl radicals (BI•-Ar), generated via dissociative electron transfer from BIH-Ar to α-bromoketone substrates, serve as key intermediates in the oxidation and reduction processes. The dramatic switch from hydrogenation to oxygenation is attributed to a steric effect of α-alkyl substituents, which causes hydrogen atom abstraction from sterically crowded BIH-Ar to α-keto-alkyl radicals to be slow and enable preferential reaction with molecular oxygen. Generation of the α-keto-alkyl radical and BI•-Ar intermediates in these process and their sterically governed hydrogen atom transfer reactions are supported by results arising from DFT calculations. Moreover, an electron spin resonance study showed that visible light irradiation of phenyl benzimidazoline (BIH-Ph) in the presence of molecular oxygen produces the benzimidazolyl radical (BI•-Ph). The addition of thiophenol into the reaction of α-bromoisobutyrophenone and BIH-Ph predominantly produced α-phenylthiolated isobutyrophenone even if a high concentration of molecular oxygen exists. Furthermore, the developed protocol was applied to other α-bromo-α,α-dialkylated carbonyl compounds.

8.
J Org Chem ; 85(6): 4344-4353, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32073264

RESUMO

An unprecedented photocatalytic system consisting of benzimidazolium aryloxide betaines (BI+-ArO-) and stoichiometric hydride reducing reagents was developed for carrying out desulfonylation reactions of N-sulfonyl-indoles, -amides, and -amines, and α-sulfonyl ketones. Measurements of absorption spectra and cyclic voltammograms as well as density functional theory (DFT) calculations were carried out to gain mechanistic information. In the catalytic system, visible-light-activated benzimidazoline aryloxides (BIH-ArO-), generated in situ by hydride reduction of the corresponding betaines BI+-ArO-, donate both an electron and a hydrogen atom to the substrates. A modified protocol was also developed so that a catalytic quantity of more easily prepared hydroxyaryl benzimidazolines (BIH-ArOH) is used along with a stoichiometric hydride donor to promote the photochemical desulfonylation reactions.

9.
J Org Chem ; 83(18): 10813-10825, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30015483

RESUMO

A visible light promoted process for desulfonylation of N-sulfonylamides and -amines has been developed, in which 1,3-dimethyl-2-hydroxynaphthylbenzimidazoline (HONap-BIH) serves as a light absorbing, electron and hydrogen atom donor, and a household white light-emitting diode serves as a light source. The process transforms various N-sulfonylamide and -amine substrates to desulfonylated products in moderate to excellent yields. The observation that the fluorescence of 1-methyl-2-naphthoxy anion is efficiently quenched by the substrates suggests that the mechanism for the photoinduced desulfonylation reaction begins with photoexcitation of the naphthoxide chromophore in HONap-BIH, which generates an excited species via intramolecular proton transfer between the HONap and BIH moieties. This process triggers single electron transfer to the substrate, which promotes loss of the sulfonyl group to form the free amide or amine. The results of studies employing radical probe substrates as well as DFT calculations suggest that selective nitrogen-sulfur bond cleavage of the substrate radical anion generates either a pair of an amide or amine anion and a sulfonyl radical or that of an amidyl or aminyl radical and sulfinate anion, depending on the nature of the N-substituent on the substrate. An intermolecular version of this protocol, in which 1-methyl-2-naphthol and 1,3-dimethyl-2-phenylbenzimidazoline are used concomitantly, was also examined.

10.
J Org Chem ; 83(7): 3921-3927, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29537851

RESUMO

Benzimidazolium naphthoxide (-ONap-BI+) was first synthesized and utilized as an unprecedented betaine photoredox catalyst. Photoexcited state of -ONap-BI+ generated by visible light irradiation catalyzes the reductive deiodination as well as desulfonylation reactions in which 1,3-dimethyl-2-phenylbenzimidazoline (Ph-BIH) cooperates with as an electron and hydrogen atom donor. Significant solvent effects on the reaction progress were discovered, and specific solvation toward imidazolium and naphthoxide moieties of -ONap-BI+ was proposed.

11.
J Org Chem ; 81(7): 2692-703, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26799089

RESUMO

Oxidative ring-opening reactions of benzene-fused bicyclic cyclopropyl silyl ethers, promoted by copper(II) tetrafluoroborate, were investigated. The regioselectivity of cyclopropane ring-opening as well as product distributions were found to be highly dependent on the nature of the solvent. In alcohols, dimeric substances arising from external bond cleavage are major products. Radical rearrangement products are also formed in solvents such as ether and ethyl acetate. On the contrary, nucleophile addition to carbocation intermediates, generated by internal bond cleavage, occurs mainly in reactions taking place in acetonitrile. It is proposed that the observed solvent effects that govern the reaction pathways followed are a consequence of varying solvation of copper intermediates, which governs their reactivity and redox properties. In addition, the influence of counteranions of the copper salts, organonitriles, cyclic dienes, and substrate structures on the pathways followed in these reactions was also examined.

12.
Chem Commun (Camb) ; 52(2): 319-22, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26515104

RESUMO

[5]Catenanes were synthesized by olefin metathesis dimerization. The reaction of pseudorotaxanes, which were derived from a [2]catenane and one equivalent of an ammonium salt bearing two terminal olefins in dichloromethane, with a catalytic amount of Grubbs catalyst afforded linear [5]catenanes in 12% yield. Intermolecular and intramolecular olefin metathesis reactions were controlled by the length of the alkyl chain of the ammonium salts.


Assuntos
Alcenos/química , Compostos de Amônio/química , Catenanos/síntese química , Rotaxanos/química , Catálise , Dimerização , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética
13.
J Org Chem ; 80(3): 1593-600, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562397

RESUMO

A new sequential, one-pot protocol for transforming 1,3-disubstituted 2,3-epoxy ketones to ß-hydroxy ketones and α-methylene ketones has been developed. Reaction of epoxy ketones with boron trifluoride etherate (BF3·OEt2) generates the cationic intermediates by regioselective epoxide ring opening and an acyl shift. Then, a treatment of these cations with 2-aryl-1,3-dimethylbenzimidazolines (DMBIH) results in formation of 1,2-disubstituted 3-hydroxy ketones. DMBIH serves as a hydride donor in the second step of this process. Finally, the ß-hydroxy ketones can be converted to 1,2-disubstituted 2-methylene ketones by treatment with methanesulfonic acid or a combination of methanesulfonyl chloride and triethylamine. Importantly, the sequential steps involved in formation of the α-methylene ketone products can be carried out in one pot.

14.
Chem Commun (Camb) ; 50(52): 6860-2, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24837224

RESUMO

The base-induced asymmetric [2,3] Stevens rearrangement of N-cinnamyl tetraalkylammonium ylides derived from L-alanine amides proceeds via a double axially chiral intermediate to afford the corresponding α-substituted alanine derivatives with high enantio- and diastereoselectivities.


Assuntos
Alanina/química , Amidas/química , Compostos de Amônio/química , Catálise , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
15.
Beilstein J Org Chem ; 9: 1397-406, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23946834

RESUMO

Copper(II)-salt-promoted oxidative ring-opening reactions of bicyclic cyclopropanol derivatives were investigated. The regioselectivities of these processes were found to be influenced by the structure of cyclopropanols as well as the counter anion of the copper(II) salts. A mechanism involving rearrangement reactions of radical intermediates and their competitive trapping by copper ions is proposed.

16.
J Org Chem ; 78(11): 5205-17, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23647354

RESUMO

The syntheses of [2]- and [3]catenanes by olefin metathesis and oxidative acetylide coupling have been studied in detail. Pseudorotaxanes that were obtained by mixing crown ether and ammonium salts containing two terminal reactive end-groups were converted to [2]- and [3]catenane. Their yields were influenced not only by the chain length of the ammonium salts but also by the concentration of the crown ether and the ammonium salts. The strain energies of [2]catenane were responsible for the formation of [2]catenane.


Assuntos
Catenanos/síntese química , Catenanos/química , Conformação Molecular , Tamanho da Partícula
17.
Org Biomol Chem ; 10(2): 339-45, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22072332

RESUMO

Asymmetric α-2-tosylethenylation of (S)-2-(pyrrolidin-1-yl)propanoic acid esters was shown to produce good yields with high enantioselectivities. The reaction proceeds via the formation of a non-racemic ammonium enolate without an external source of chirality.


Assuntos
Aminoácidos/química , Ésteres/química , Compostos de Amônio Quaternário/síntese química , Sulfonas/química , Tolueno/análogos & derivados , Estrutura Molecular , Compostos de Amônio Quaternário/química , Estereoisomerismo , Tolueno/química
18.
J Org Chem ; 74(6): 2467-75, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19216503

RESUMO

Samarium diiodide promoted reaction of various alpha-bromomethyl cycloalkanones, followed by subsequent treatment with trimethylsilyl chloride, leads to the production of cyclopropyl silyl ethers embedded in bicyclo[m.1.0]alkane frameworks. Treatment of the ethers with oxidative electron-transfer reagents, such as Fe(III), Ce(IV), and Mn(III) salts, generates ring-expanded ketones that convert to cyclic conjugated enones in moderate to good yields. In addition, the reduction-oxidation reaction sequences can be successfully performed in one pot. The regioselectivities of cyclopropane ring opening in the bicyclic substrates depend on the oxidizing agents used. For example, reactions promoted by FeCl3 with pyridine lead to the expected ring-expansion process involving internal-bond cleavage of bicycloalkane and yielding cyclic enones as final products. In contrast, reactions with Ce(NH4)2(NO3)6 or Mn(OAc)3 as oxidizing agents proceed by way of external-bond cleavage to give alpha-iodomethyl cycloalkanones.

19.
Org Lett ; 9(15): 2811-4, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17595095

RESUMO

Oxidative ring-opening reactions of cyclopropyl silyl ethers incorporated into bicyclo[m.1.0]alkane framework were investigated. The results show that the regioselectivities for ring-opening of intermediate radical cations, formed by single electron transfer, are governed by the nature of the nucleophile as well as oxidizing species.


Assuntos
Ciclopropanos/química , Ácido N-Acetilneuramínico/química , Elétrons , Éteres , Estereoisomerismo
20.
J Org Chem ; 70(23): 9632-5, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16268649

RESUMO

[Reaction: see text]. In the photoreaction of benzophenones with 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI), benzhydrols were major products. Addition of H2O accelerated the reaction with no change in the product distribution, while AcOH, PhOH, and metal salts such as LiClO4 and Mg(ClO4)2 were effective additives to produce benzpinacols. In contrast, benzpinacols were exclusively formed regardless of the solvent and the additive in the reactions with 2-(o-hydroxyphenyl)-1,3-dimethylbenzimidazoline (o-HPDMBI). These observations are consistent with the hypothesis that DMPBI*+ donates a proton at the C2 position to the benzophenone ketyl radicals while o-HPDMBI*+ donates a phenol proton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...