Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(5): 1249-1257, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089049

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is widely utilized to investigate the structural heterogeneity and dynamics of biomolecules. However, it has been difficult to simultaneously achieve a wide observation time window, a high structure resolution, and a high time resolution with the current smFRET methods. Herein, we introduce a new method utilizing two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS) and surface immobilization techniques. This method, scanning 2D FLCS, enables us to examine the structural heterogeneity and dynamics of immobilized biomolecules on a time scale from microsecond to subsecond by slowly scanning the sample stage at the rate of ∼1 µm/s. Application to the DNA Holliday junction (HJ) complex under various [Mg2+] conditions demonstrates that scanning 2D FLCS enables tracking reaction kinetics from 25 µs to 30 ms with a time resolution as high as 1 µs. Furthermore, the high structure resolution of scanning 2D FLCS allows us to unveil the ensemble nature of each isomer state and the heterogeneity of the dynamics of the HJ.


Assuntos
DNA Cruciforme , DNA/química , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Ácidos Nucleicos Imobilizados/química , Isomerismo , Cinética , Rodaminas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA