Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 64(10): 1231-1242, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37647615

RESUMO

ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein that regulates the organization and dynamics of actin microfilaments. Eleven ADFs in the Arabidopsis thaliana genome are grouped into four subclasses, and subclass I ADFs, ADF1-4, are all expressed throughout the plant. Previously, we showed that subclass I ADFs function in the regulation of the response against powdery mildew fungus as well as in the regulation of cell size and endoreplication. Here, we report a new role of subclass I ADFs in the regulation of nuclear organization and gene expression. Through microscopic observation of epidermal cells in mature leaves, we found that the size of chromocenters in both adf4 and transgenic lines where expression of subclass I ADFs is downregulated (ADF1-4Ri) was reduced compared with that of wild-type Col-0. Arabidopsis thaliana possesses eight ACTIN (ACT) genes, among which ACT2, -7 and -8 are expressed in vegetative organs. The chromocenter size in act7, but not in the act2/8 double mutant, was enlarged compared with that in Col-0. Microarray analysis revealed that 1,818 genes were differentially expressed in adf4 and ADF1-4Ri. In particular, expression of 22 nucleotide-binding leucine-rich repeat genes, which are involved in effector-triggered plant immunity, was reduced in adf4 and ADF1-4Ri. qRT-PCR confirmed the altered expressions shown with microarray analysis. Overall, these results suggest that ADF regulates various aspects of plant physiology through its role in regulation of nuclear organization and gene expression. The mechanism how ADF and ACT regulate nuclear organization and gene expression is discussed.

2.
Nat Plants ; 8(8): 940-953, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35915144

RESUMO

The arrangement of centromeres within the nucleus differs among species and cell types. However, neither the mechanisms determining centromere distribution nor its biological significance are currently well understood. In this study, we demonstrate the importance of centromere distribution for the maintenance of genome integrity through the cytogenic and molecular analysis of mutants defective in centromere distribution. We propose a two-step regulatory mechanism that shapes the non-Rabl-like centromere distribution in Arabidopsis thaliana through condensin II and the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Condensin II is enriched at centromeres and, in cooperation with the LINC complex, induces the scattering of centromeres around the nuclear periphery during late anaphase/telophase. After entering interphase, the positions of the scattered centromeres are then stabilized by nuclear lamina proteins of the CROWDED NUCLEI (CRWN) family. We also found that, despite their strong impact on centromere distribution, condensin II and CRWN proteins have little effect on chromatin organization involved in the control of gene expression, indicating a robustness of chromatin organization regardless of the type of centromere distribution.


Assuntos
Centrômero , Membrana Nuclear , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA , Complexos Multiproteicos , Membrana Nuclear/metabolismo
3.
Plant Biotechnol (Tokyo) ; 39(1): 5-12, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35800969

RESUMO

The development of the plant body starts with spore germination in bryophytes. In many cases, the first division of the spore occurs after germination and cell elongation of the spore. In Marchantia polymorpha, asymmetric division occurs upon spore germination to generate two daughter cells: the larger one retains the ability to divide and develops into the thallus via sporeling or protonema, while the smaller one maintains tip growth and differentiates into the first rhizoid, providing a scaffold for initial development. Although spore germination of M. polymorpha was described in the 19th century, the intracellular processes of the first asymmetric division of the spore have not been well characterized. In this study, we used live-cell imaging analyses to elucidate microtubule dynamics during the first asymmetric division concomitantly with germination. In particular, we demonstrated that the preprophase band was not formed in the spore and that the bipolar prospindle, which is a microtubule structure surrounding the nucleus during prophase, migrated from the center to the periphery in the spore, suggesting that it was the earliest visible sign of cell polarity. We also showed that the occurrence of asymmetric division depended on actin filaments. Our findings regarding the first division of the spore in M. polymorpha will lead to a better model for cell-autonomous asymmetric division in plants.

4.
Plant Physiol ; 189(2): 459-464, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301535

RESUMO

Analyzing only one cell allows the changes and characteristics of intracellular metabolites during the chromosome segregation process to be precisely captured and mitotic sub-phases to be dissected at the metabolite level.


Assuntos
Segregação de Cromossomos , Mitose
5.
Genes Cells ; 25(7): 475-482, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32294311

RESUMO

Stomata are tiny pores on plant leaves and stems surrounded by a pair of differentiated epidermal cells known as guard cells. Plants undergo guard cell differentiation in response to environmental cues, including atmospheric CO2 . To quantitatively evaluate stomatal development in response to elevated CO2 , imaging analysis of stomata was conducted using young cotyledons of Arabidopsis thaliana grown under ambient (380 ppm) and elevated (1,000 ppm) CO2 conditions. Our analysis revealed that treatment with 1,000 ppm CO2 did not affect stomatal numbers on abaxial sides of cotyledons but increased cotyledon area, resulting in decreased stomatal density, 7 days after germination. Interestingly, this treatment also perturbed the uniform distribution of stomata via excess satellite stomata and stomatal precursor cells. We used overexpression lines of the DNA replication licensing factor gene CDC6, a reported positive regulator of satellite stomata production. CDC6 overexpression decreased the speed of cotyledon expansion, even under treatment with 1,000 ppm CO2 , possibly by suppressing pavement cell maturation. In contrast, treatment with 1,000 ppm CO2 induced stomatal distribution changes in the overexpressor. These results suggest that treatment with 1,000 ppm CO2 enhances both cotyledon expansion and satellite stomata production via independent pathways, at least in young cotyledons of A. thaliana.


Assuntos
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Cotilédone/metabolismo , Estômatos de Plantas/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cotilédone/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estômatos de Plantas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação para Cima
6.
Plant Cell Physiol ; 61(3): 445-456, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32030404

RESUMO

Plant growth and development relies on the accurate positioning of the cell plate between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which contains bipolar microtubules that polymerize to form a framework with the plus ends at or near the division site. This allows the transport of Golgi-derived vesicles toward the plus ends to form and expand the cell plate. Actin filaments play important roles in cell plate expansion and guidance in plant cytokinesis at the late phase, but whether they are involved at the early phase is unknown. To investigate this further, we disrupted the actin filaments in cell cycle-synchronized tobacco BY-2 cells with latrunculin B (LatB), an actin polymerization inhibitor. We observed the cells under a transmission electron microscope or a spinning-disk confocal laser scanning microscope. We found that disruption of actin filaments by LatB caused the membrane vesicles at the equatorial plane of the cell plate to be dispersed rather than form clusters as they did in the untreated cells. The midzone constriction of phragmoplast microtubules also was perturbed in LatB-treated cells. The live cell imaging and kymograph analysis showed that disruption of actin filaments also changed the accumulation timing of NACK1 kinesin, which plays a crucial role in cell plate expansion. This suggests that there are two functionally different types of microtubules in the phragmoplast. Together, our results show that actin filaments regulate phragmoplast microtubules at the initial phase of plant cytokinesis.


Assuntos
Citoesqueleto de Actina/metabolismo , Citocinese/fisiologia , Citoplasma/metabolismo , Microtúbulos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Divisão Celular , Cinesinas/metabolismo , Desenvolvimento Vegetal/fisiologia , Tiazolidinas/metabolismo , Nicotiana/metabolismo
7.
PLoS One ; 14(2): e0212619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794647

RESUMO

Automated quantitative image analysis is essential for all fields of life science research. Although several software programs and algorithms have been developed for bioimage processing, an advanced knowledge of image processing techniques and high-performance computing resources are required to use them. Hence, we developed a cloud-based image analysis platform called IMACEL, which comprises morphological analysis and machine learning-based image classification. The unique click-based user interface of IMACEL's morphological analysis platform enables researchers with limited resources to evaluate particles rapidly and quantitatively without prior knowledge of image processing. Because all the image processing and machine learning algorithms are performed on high-performance virtual machines, users can access the same analytical environment from anywhere. A validation study of the morphological analysis and image classification of IMACEL was performed. The results indicate that this platform is an accessible and potentially powerful tool for the quantitative evaluation of bioimages that will lower the barriers to life science research.


Assuntos
Computação em Nuvem , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Software
8.
Proc Natl Acad Sci U S A ; 116(6): 2338-2343, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30651313

RESUMO

In most flowering plants, the asymmetric cell division of the zygote is the initial step in establishing the apical-basal axis of the mature plant. The zygote is polarized, possessing the nucleus at the apical tip and large vacuoles at the basal end. Despite their known polar localization, whether the positioning of the vacuoles and the nucleus is coordinated and what the role of the vacuole is in the asymmetric zygotic division remain elusive. In the present study, we utilized a live-cell imaging system to visualize the dynamics of vacuoles during the entire process of zygote polarization in Arabidopsis Image analysis revealed that the vacuoles formed tubular strands around the apically migrating nucleus. They gradually accumulated at the basal region and filled the space, resulting in asymmetric distribution in the mature zygote. To assess the role of vacuoles in the zygote, we screened various vacuole mutants and identified that shoot gravitropism2 (sgr2), in which the vacuolar structural change was impaired, failed to form tubular vacuoles and to polarly distribute the vacuole. In sgr2, large vacuoles occupied the apical tip and thus nuclear migration was blocked, resulting in a more symmetric zygotic division. We further observed that tubular vacuole formation and asymmetric vacuolar distribution both depended on the longitudinal array of actin filaments. Overall, our results show that vacuolar dynamics is crucial not only for the polar distribution along actin filaments but also for adequate nuclear positioning, and consequently zygote-division asymmetry.


Assuntos
Arabidopsis/fisiologia , Divisão Celular Assimétrica , Polaridade Celular , Vacúolos/metabolismo , Zigoto/citologia , Zigoto/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Imunofluorescência , Mutação
9.
J Biol Chem ; 294(7): 2256-2266, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593507

RESUMO

Field studies have shown that plants growing next to herbivore-infested plants acquire higher resistance to herbivore damage. This increased resistance is partly due to regulation of plant gene expression by volatile organic compounds (VOCs) released by plants that sense environmental challenges such as herbivores. The molecular basis for VOC sensing in plants, however, is poorly understood. Here, we report the identification of TOPLESS-like proteins (TPLs) that have VOC-binding activity and are involved in VOC sensing in tobacco. While screening for volatiles that induce stress-responsive gene expression in tobacco BY-2 cells and tobacco plants, we found that some sesquiterpenes induce the expression of stress-responsive genes. These results provided evidence that plants sense these VOCs and motivated us to analyze the mechanisms underlying volatile sensing using tobacco as a model system. Using a pulldown assay with caryophyllene derivative-linked beads, we identified TPLs as transcriptional co-repressors that bind volatile caryophyllene analogs. Overexpression of TPLs in cultured BY-2 cells or tobacco leaves reduced caryophyllene-induced gene expression, indicating that TPLs are involved in the responses to caryophyllene analogs in tobacco. We propose that unlike animals, which use membrane receptors for sensing odorants, a transcriptional co-repressor plays a role in sensing and mediating VOC signals in plant cells.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Nicotiana , Proteínas de Plantas , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Transcrição Gênica/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
10.
Plant Signal Behav ; 13(4): e1454815, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29557717

RESUMO

We previously found that sucrose solution immersion treatment permitted ectopic guard cell differentiation, resulting in clustered stomatal guard cells. Using this system, we examined the effects of sucrose solution-induced stomatal clustering on guard cell cortical microtubules and the stomatal response to fusicoccin. Confocal observation revealed that the radial orientation of cortical microtubules was largely maintained in clustered guard cells. Outward movement of cortical microtubule plus-ends was also kept in the clustered guard cells. Fusicoccin treatment induced stomatal opening in both spaced and clustered stomata, although sucrose solution-treated guard cells had lower stomatal apertures. These results suggested that immersion treatment with sucrose solution perturbed the one-cell spacing of stomata but not the cortical microtubule organization required to open stomatal pores.


Assuntos
Glicosídeos/metabolismo , Microtúbulos/metabolismo , Estômatos de Plantas/metabolismo , Microtúbulos/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Sacarose/metabolismo
11.
Front Plant Sci ; 8: 677, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507556

RESUMO

Specific cellular components including products of phosphatidylinositol (PI) metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K) and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA). Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.

12.
Protoplasma ; 254(1): 367-377, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26960821

RESUMO

In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.


Assuntos
Parede Celular/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Luminescentes/metabolismo , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Rede trans-Golgi/metabolismo , Arabidopsis/citologia , Biomarcadores/metabolismo
13.
Plant Cell Physiol ; 58(1): 106-119, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011873

RESUMO

Pavement cells in cotyledons and true leaves exhibit a jigsaw puzzle-like morphology in most dicotyledonous plants. Among the molecular mechanisms mediating cell morphogenesis, two antagonistic Rho-like GTPases regulate local cell outgrowth via cytoskeletal rearrangements. Analyses of several cell wall-related mutants suggest the importance of cell wall mechanics in the formation of interdigitated patterns. However, how these factors are integrated is unknown. In this study, we observed that the application of exogenous cellulase to hydroponically grown Arabidopsis thaliana cotyledons switched the interdigitation of pavement cells to the production of smoothly elongated cells. The cellulase-induced inhibition of cell interdigitation was not observed in a RIC1 knockout mutant. This gene encodes a Rho-like GTPase-interacting protein important for localized cell growth suppression via microtubule bundling on concave cell interfaces. Additionally, to characterize pavement cell morphologies, we developed a mathematical model that considers the balance between cell and cell wall growth, restricted global cell growth orientation, and regulation of local cell outgrowth mediated by a Rho-like GTPase-cytoskeleton system. Our computational simulations fully support our experimental observations, and suggest that interdigitated patterns form because of mechanical buckling in the absence of Rho-like GTPase-dependent regulation of local cell outgrowth. Our model clarifies the cell wall mechanics influencing pavement cell morphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulase/farmacologia , Cotilédone/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Algoritmos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Crescimento Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Forma Celular/genética , Parede Celular/genética , Parede Celular/metabolismo , Simulação por Computador , Cotilédone/citologia , Cotilédone/genética , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Mutação , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas
14.
Plant Direct ; 1(6): e00021, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31245675

RESUMO

The network structure of cellulose fibrils provides mechanical properties to the primary cell wall, thereby determining the shapes and growth patterns of plant cells. Despite intensive studies, the construction process of the network structure in muro remains largely unknown, mainly due to the lack of a robust, straightforward technique to evaluate network configuration. Here, we developed a quantitative confocal imaging method for general use in the study of cell wall dynamics in protoplasts derived from Arabidopsis leaf mesophyll cells. Confocal imaging of regenerating cell walls in protoplasts stained with Calcofluor allowed us to visualize the cellulose network, comprising strings of bundled cellulosic fibrils. Using image analysis techniques, we measured several metrics including total length, which is a measure of the spread of the cellulose network. The total length increased during cell wall regeneration. In a proof-of-concept experiment using microtubule-modifying agents, oryzalin, an inhibitor of microtubule polymerization, inhibited the increase in total length and caused abnormal orientation of the network, as shown by the decrease in the average angle of the cellulose with respect to the cell long axis. Taxol, a microtubule stabilizer, stimulated the bundling of cellulose fibrils, as shown by the increase in skewness in the fluorescence intensity distribution of Calcofluor, and inhibited the increase in total length. These results demonstrate the validity of this method for quantitative imaging of the cellulose network, providing an opportunity to gain insight into the dynamic aspects of cell wall regeneration.

15.
Proc Natl Acad Sci U S A ; 113(49): 14157-14162, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27911812

RESUMO

The asymmetric cell division of the zygote is the initial and crucial developmental step in most multicellular organisms. In flowering plants, whether zygote polarity is inherited from the preexisting organization in the egg cell or reestablished after fertilization has remained elusive. How dynamically the intracellular organization is generated during zygote polarization is also unknown. Here, we used a live-cell imaging system with Arabidopsis zygotes to visualize the dynamics of the major elements of the cytoskeleton, microtubules (MTs), and actin filaments (F-actins), during the entire process of zygote polarization. By combining image analysis and pharmacological experiments using specific inhibitors of the cytoskeleton, we found features related to zygote polarization. The preexisting alignment of MTs and F-actin in the egg cell is lost on fertilization. Then, MTs organize into a transverse ring defining the zygote subapical region and driving cell outgrowth in the apical direction. F-actin forms an apical cap and longitudinal arrays and is required to position the nucleus to the apical region of the zygote, setting the plane of the first asymmetrical division. Our findings show that, in flowering plants, the preexisting cytoskeletal patterns in the egg cell are lost on fertilization and that the zygote reorients the cytoskeletons to perform directional cell elongation and polar nuclear migration.


Assuntos
Citoesqueleto de Actina/fisiologia , Arabidopsis/embriologia , Polaridade Celular , Microtúbulos/fisiologia , Sementes/fisiologia , Divisão Celular , Fertilização
16.
PLoS One ; 11(7): e0159291, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27415815

RESUMO

Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of immune signaling in plants.


Assuntos
Arabidopsis/imunologia , Citoesqueleto/fisiologia , Imunidade Vegetal/fisiologia , Estômatos de Plantas/fisiologia , Citoesqueleto de Actina/fisiologia , Arabidopsis/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Estômatos de Plantas/citologia
17.
Plant Cell Physiol ; 57(9): 1854-64, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27318282

RESUMO

RAB5 is a small GTPase that acts in endosomal trafficking. In addition to canonical RAB5 members that are homologous to animal RAB5, land plants harbor a plant-specific RAB5, the ARA6 group, which regulates trafficking events distinct from canonical RAB5 GTPases. Here, we report that plant RAB5, both canonical and plant-specific members, accumulate at the interface between host plants and biotrophic fungal and oomycete pathogens. Biotrophic fungi and oomycetes colonize living plant tissues by establishing specialized infection hyphae, the haustorium, within host plant cells. We found that Arabidopsis thaliana ARA6/RABF1, a plant-specific RAB5, is localized to the specialized membrane that surrounds the haustorium, the extrahaustorial membrane (EHM), formed by the A. thaliana-adapted powdery mildew fungus Golovinomyces orontii Whereas the conventional RAB5 ARA7/RABF2b was also localized to the EHM, endosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) and RAB5-activating proteins were not, which suggests that the EHM has modified endosomal characteristic. The recruitment of host RAB5 to the EHM was a property shared by the barley-adapted powdery mildew fungus Blumeria graminis f.sp. hordei and the oomycete Hyaloperonospora arabidopsidis, but the extrahyphal membrane surrounding the hypha of the hemibiotrophic fungus Colletotrichum higginsianum at the biotrophic stage was devoid of RAB5. The localization of RAB5 to the EHM appears to correlate with the functionality of the haustorium. Our discovery sheds light on a novel relationship between plant RAB5 and obligate biotrophic pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidade , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Endossomos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
18.
J Exp Bot ; 67(11): 3251-61, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27034327

RESUMO

HT1 (HIGH LEAF TEMPERATURE 1) is the first component associated with changes in stomatal aperture in response to CO2 to be isolated by forward genetic screening. The HT1 gene encodes a protein kinase expressed mainly in guard cells. The loss-of-function ht1-1 and ht1-2 mutants in Arabidopsis thaliana have CO2-hypersensitive stomatal closure with concomitant reductions in their kinase activities in vitro In addition to these mutants, in this study we isolate or obtaine five new ht1 alleles (ht1-3, ht1-4, ht1-5, ht1-6, and ht1-7). Among the mutants, only ht1-3 has a dominant mutant phenotype and has widely opened stomata due to CO2 insensitivity. The ht1-3 mutant has a missense mutation affecting a non-conserved residue (R102K), whereas the other six recessive mutants have mutations in highly conserved residues in the catalytic domains required for kinase activity. We found that the dominant mutation does not affect the expression of HT1 or the ability to phosphorylate casein, a universal kinase substrate, but it does affect autophosphorylation activity in vitro A 3D structural model of HT1 also shows that the R102 residue protrudes from the surface of the kinase, implying a role for the formation of oligomers and/or interaction with its targets. We demonstrate that both the loss-of-function and gain-of-function ht1 mutants have completely disrupted CO2 responses, although they have normal responses to ABA. Furthermore, light-induced stomatal opening is smaller in ht1-3 and much smaller in ht1-2 Taken together, these results indicate that HT1 is a critical regulator for CO2 signaling and is partially involved in the light-induced stomatal opening pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas Quinases/genética , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estômatos de Plantas/enzimologia , Estômatos de Plantas/fisiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Alinhamento de Sequência
19.
Plant Physiol ; 170(3): 1420-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747284

RESUMO

Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1-ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Fatores de Despolimerização de Actina/classificação , Fatores de Despolimerização de Actina/genética , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Peróxido de Hidrogênio/metabolismo , Mutação , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais
20.
J Plant Res ; 129(1): 103-110, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26646379

RESUMO

Obligate biotrophic fungi that cause powdery mildew on host plants form a specialized infection organ called the haustorium in the host apoplast. It was previously reported that the haustorium is surrounded by host actin microfilaments (AFs). The previous study used fixed cells, in which AFs were stained with fluorescently labeled phalloidine, therefore the structural dynamics of haustorium-surrounding AFs has not been examined. In the present study, we performed a live imaging analysis to examine the dynamics and developmental changes in the organization of haustorium-surrounding host AFs using host Arabidopsis thaliana and A. thaliana-adapted powdery mildew fungus Golovinomyces orontii. Image correlation-based velocimetry analysis suggested that AFs around haustorium are rather static compared to the dynamicity of AFs at the cell surface. Quantification of AF density and bundling showed that the density, but not the level of bundling, of haustorium-surrounding AFs increased as the haustorium matures. The possible role of AFs around haustoria is discussed.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ascomicetos/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteínas de Fluorescência Verde/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...