Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 111(1): 84-93, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27142980

RESUMO

AIMS: In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. METHODS AND RESULTS: Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages-sprout initiation, extension, connection, and stability-that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1(-/-) mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1(-/-) vascular networks, with an overall outcome of reduced numbers of new conduits. CONCLUSIONS: These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies.


Assuntos
Vasos Sanguíneos/metabolismo , Células-Tronco Embrionárias/metabolismo , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Vasos Sanguíneos/embriologia , Forma Celular , Células Cultivadas , Simulação por Computador , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Microscopia de Vídeo , Modelos Cardiovasculares , Método de Monte Carlo , Morfogênese , Fenótipo , Transdução de Sinais , Fatores de Tempo , Imagem com Lapso de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
2.
Front Pharmacol ; 5: 60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772082

RESUMO

Excitation-contraction coupling (ECC) in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca(2+) transport. Voltage- and Ca(2+)-dependent L-type Ca(2+) channels (LCCs) allow for Ca(2+) entry into the myocyte, which then binds to nearby ryanodine receptors (RyRs) and triggers Ca(2+) release from the sarcoplasmic reticulum in a process known as Ca(2+)-induced Ca(2+) release. The highly coordinated Ca(2+)-mediated interaction between LCCs and RyRs is further regulated by the cardiac isoform of the Ca(2+)/calmodulin-dependent protein kinase (CaMKII). Because CaMKII targets and modulates the function of many ECC proteins, elucidation of its role in ECC and integrative cellular function is challenging and much insight has been gained through the use of detailed computational models. Multiscale models that can both reconstruct the detailed nature of local signaling events within the cardiac dyad and predict their functional consequences at the level of the whole cell have played an important role in advancing our understanding of CaMKII function in ECC. Here, we review experimentally based models of CaMKII function with a focus on LCC and RyR regulation, and the mechanistic insights that have been gained through their application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...