Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Soft Robot ; 11(4): 684-697, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38252793

RESUMO

Soft gastric simulators are in vitro biomimetic modules that can reproduce the antral contraction waves (ACWs). Along with providing information concerning stomach contents, stomach simulators enable experts to evaluate the digestion process of foods and drugs. Traditionally, open-loop control approaches were implemented on stomach simulators to produce ACWs. Constructing a closed-loop control system is essential to improve the simulator's ability to imitate ACWs in additional scenarios and avoid constant tuning. Closed-loop control can enhance stomach simulators in accuracy, responding to various food and drug contents, timing, and unknown disturbances. In this article, a new generation of anatomically realistic soft pneumatic gastric simulators is designed and fabricated. The presented simulator represents the antrum, the lower portion of the stomach where ACWs occur. It is equipped with a real-time feedback system to implement diverse closed-loop controllers on demand. All the details of the physical design, fabrication, and assembly process are discussed. Also, the measures taken for the mechatronics design and sensory system are highlighted in this article. Through several implementation algorithms and techniques, three closed-loop controllers, including model-based and model-free schemes are designed and successfully applied on the presented simulator to imitate ACWs. All the experimental outcomes are carefully analyzed and compared against the biological counterparts. It is demonstrated that the presented simulator can serve as a reliable tool and method to scrutinize digestion and promote novel technologies around the human stomach and the digestion process. This research methodology can also be utilized to develop other biomimetic and bioinspired applications.


Assuntos
Biomimética , Antro Pilórico , Humanos , Biomimética/instrumentação , Antro Pilórico/fisiologia , Estômago/fisiologia , Modelos Biológicos , Algoritmos , Desenho de Equipamento , Simulação por Computador , Contração Muscular/fisiologia
2.
Soft Robot ; 10(3): 504-516, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36346277

RESUMO

A human stomach is an organ in the digestive system that breaks down foods by physiological digestion, including mechanical and chemical functions. The mechanical function is controlled by peristaltic waves generated over the stomach body, known as antral contraction waves (ACW). The stomach's physiological digestion is essential to sustain nutrition and health in humans. Replicating the digestion process in a robot provides a test environment as an alternative solution to in vivo testing, which is difficult in practice. Stomach robots made of rigid rods and metal cylinders are unrealistic replicas to contract and expand like biological examples. With soft robotics technology, it is possible to translate biological behavior into an engineering context. Soft robotics introduce potential methods to replicate peristaltic waves and achieve a soft-bodied stomach simulator. This work presents a soft robotic stomach simulator's (SoRSS) concept, design, and experimental validation. A pneumatic bellows actuation for linear elongation and a ring of bellows actuation for circular contraction are proposed first. Multi-ring actuators are then arranged to form an SoRSS that generates ACW and antral contracting pressure (ACP). The SoRSS satisfies the specification of human stomach anatomy and motility and finally undergoes experimental validation using videofluoroscopy with the outcomes presenting the ACW, ACP, and the digestion phases during the actuation process. Those are compared with other medical studies to validate SoRSS functionality.


Assuntos
Robótica , Humanos , Robótica/métodos , Biomimética/métodos , Engenharia , Estômago
3.
Sci Rep ; 12(1): 12592, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869154

RESUMO

Realtime visual feedback from consequences of actions is useful for future safety-critical human-robot interaction applications such as remote physical examination of patients. Given multiple formats to present visual feedback, using face as feedback for mediating human-robot interaction in remote examination remains understudied. Here we describe a face mediated human-robot interaction approach for remote palpation. It builds upon a robodoctor-robopatient platform where user can palpate on the robopatient to remotely control the robodoctor to diagnose a patient. A tactile sensor array mounted on the end effector of the robodoctor measures the haptic response of the patient under diagnosis and transfers it to the robopatient to render pain facial expressions in response to palpation forces. We compare this approach against a direct presentation of tactile sensor data in a visual tactile map. As feedback, the former has the advantage of recruiting advanced human capabilities to decode expressions on a human face whereas the later has the advantage of being able to present details such as intensity and spatial information of palpation. In a user study, we compare these two approaches in a teleoperated palpation task to find the hard nodule embedded in the remote abdominal phantom. We show that the face mediated human-robot interaction approach leads to statistically significant improvements in localizing the hard nodule without compromising the nodule position estimation time. We highlight the inherent power of facial expressions as communicative signals to enhance the utility and effectiveness of human-robot interaction in remote medical examinations.


Assuntos
Robótica , Retroalimentação , Retroalimentação Sensorial , Humanos , Palpação , Tato/fisiologia
4.
Soft Robot ; 9(4): 807-819, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34704835

RESUMO

Biomimicry of the stomach's peristaltic contractions can be challenging in the design, modeling, and control of a soft actuator. The mimicking of organ contractions advances our knowledge of the digestive system and analyzes the biological behavior by testing with a physical robot. This article proposes a ring-shaped soft pneumatic actuator (RiSPA) as a segment of the digestive tract. RiSPA is made of a ring frame with embedded bellow actuators that generate contractive motions. An embedded sensory system measures the contraction using range sensors. The kinematics and dynamics of RiSPA's contraction are modeled and simulated, while a state feedback algorithm is applied to them. The simulation results are validated experimentally by comparing the RiSPA measurements with desired applied signals. The proposed actuator provides controllable symmetrical and asymmetrical contractions analog to the human stomach. The results of RiSPA validate the prediction performance of the simulation and controller with applied sinusoidal signals as a peristaltic wave. RiSPA contractions can be applied to a broad range of applications, such as imitating the esophagus and intestine contractions.


Assuntos
Robótica , Fenômenos Biomecânicos , Simulação por Computador , Desenho de Equipamento , Humanos , Movimento (Física) , Robótica/métodos
5.
Front Robot AI ; 8: 730946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738017

RESUMO

Communication delay represents a fundamental challenge in telerobotics: on one hand, it compromises the stability of teleoperated robots, on the other hand, it decreases the user's awareness of the designated task. In scientific literature, such a problem has been addressed both with statistical models and neural networks (NN) to perform sensor prediction, while keeping the user in full control of the robot's motion. We propose shared control as a tool to compensate and mitigate the effects of communication delay. Shared control has been proven to enhance precision and speed in reaching and manipulation tasks, especially in the medical and surgical fields. We analyse the effects of added delay and propose a unilateral teleoperated leader-follower architecture that both implements a predictive system and shared control, in a 1-dimensional reaching and recognition task with haptic sensing. We propose four different control modalities of increasing autonomy: non-predictive human control (HC), predictive human control (PHC), (shared) predictive human-robot control (PHRC), and predictive robot control (PRC). When analyzing how the added delay affects the subjects' performance, the results show that the HC is very sensitive to the delay: users are not able to stop at the desired position and trajectories exhibit wide oscillations. The degree of autonomy introduced is shown to be effective in decreasing the total time requested to accomplish the task. Furthermore, we provide a deep analysis of environmental interaction forces and performed trajectories. Overall, the shared control modality, PHRC, represents a good trade-off, having peak performance in accuracy and task time, a good reaching speed, and a moderate contact with the object of interest.

6.
Soft Robot ; 8(3): 273-283, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32559391

RESUMO

The human stomach breaks down and transports food by coordinated radial contractions of the gastric walls. The radial contractions periodically propagate through the stomach and constitute the peristaltic contractions, also called the gastric motility. The force, amplitude, and frequency of peristaltic contractions are relevant to massaging and transporting the food contents in the gastric lumen. However, existing gastric simulators have not faithfully replicated gastric motility. Herein, we report a soft robotic gastric simulator (SoGut) that emulates peristaltic contractions in an anatomically realistic way. SoGut incorporates an array of circular air chambers that generate radial contractions. The design and fabrication of SoGut leverages principles from the soft robotics field, which features compliance and adaptability. We studied the force and amplitude of the contractions when the lumen of SoGut was empty or filled with contents of different viscosity. We examined the contracting force using manometry. SoGut exhibited a similar range of contracting force as the human stomach reported in the literature. Besides, we investigated the amplitude of the contractions through videofluoroscopy where the contraction ratio was derived. The contraction ratio as a function of inflation pressure is found to match the observations of in vivo situations. We demonstrated that SoGut can achieve in vitro peristaltic contractions by coordinating the inflation sequence of multiple air chambers. It exhibited the functions to massage and transport the food contents. SoGut can simulate the physiological motions of the human stomach to advance research of digestion.


Assuntos
Robótica , Digestão/fisiologia , Humanos , Manometria , Peristaltismo/fisiologia , Estômago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA