Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(5): 1267-1281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36353841

RESUMO

Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.


Assuntos
Sequestro de Carbono , Ecossistema , Solo , Dióxido de Carbono/análise , Tundra , Regiões Árticas , Ciclo do Carbono , Plantas , Carbono/análise
2.
Sci Rep ; 12(1): 3986, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314726

RESUMO

Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO2 later in the season.


Assuntos
Sequestro de Carbono , Ecossistema , Regiões Árticas , Dióxido de Carbono , Mudança Climática , Plantas , Estações do Ano , Solo , Tundra
3.
Glob Chang Biol ; 26(9): 5042-5051, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32602589

RESUMO

Cold seasons in Arctic ecosystems are increasingly important to the annual carbon balance of these vulnerable ecosystems. Arctic winters are largely harsh and inaccessible leading historic data gaps during that time. Until recently, cold seasons have been assumed to have negligible impacts on the annual carbon balance but as data coverage increases and the Arctic warms, the cold season has been shown to account for over half of annual methane (CH4 ) emissions and can offset summer photosynthetic carbon dioxide (CO2 ) uptake. Freeze-thaw cycle dynamics play a critical role in controlling cold season CO2 and CH4 loss, but the relationship has not been extensively studied. Here, we analyze freeze-thaw processes through in situ CO2 and CH4 fluxes in conjunction with soil cores for physical structure and porewater samples for redox biogeochemistry. We find a movement of water toward freezing fronts in soil cores, leaving air spaces in soils, which allows for rapid infiltration of oxygen-rich snow melt in spring as shown by oxidized iron in porewater. The snow melt period coincides with rising ecosystem respiration and can offset up to 41% of the summer CO2 uptake. Our study highlights this important seasonal process and shows spring greenhouse gas emissions are largely due to production from respiration instead of only bursts of stored gases. Further warming is projected to result in increases of snowpack and deeper thaws, which could increase this ecosystem respiration dominate snow melt period causing larger greenhouse gas losses during spring.


Assuntos
Ecossistema , Neve , Regiões Árticas , Dióxido de Carbono , Congelamento , Metano , Respiração , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...