Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108271

RESUMO

Cell cycle is a cellular process that is subject to stringent control. In contrast to the wealth of knowledge of proteins controlling the cell cycle, very little is known about the molecular role of lncRNAs (long noncoding RNAs) in cell-cycle progression. By performing genome-wide transcriptome analyses in cell-cycle-synchronized cells, we observed cell-cycle phase-specific induction of >2000 lncRNAs. Further, we demonstrate that an S-phase-upregulated lncRNA, SUNO1, facilitates cell-cycle progression by promoting YAP1-mediated gene expression. SUNO1 facilitates the cell-cycle-specific transcription of WTIP, a positive regulator of YAP1, by promoting the co-activator, DDX5-mediated stabilization of RNA polymerase II on chromatin. Finally, elevated SUNO1 levels are associated with poor cancer prognosis and tumorigenicity, implying its pro-survival role. Thus, we demonstrate the role of a S-phase up-regulated lncRNA in cell-cycle progression via modulating the expression of genes controlling cell proliferation.


Assuntos
Proliferação de Células/genética , Proteínas Correpressoras/genética , Proteínas do Citoesqueleto/genética , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia , Proteínas Correpressoras/metabolismo , Proteínas do Citoesqueleto/metabolismo , RNA Helicases DEAD-box/metabolismo , Células HCT116 , Células HeLa , Humanos , RNA Longo não Codificante/metabolismo , Fase S , Regulação para Cima
2.
Methods ; 178: 104-113, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494246

RESUMO

Several protein-RNA cross linking protocols have been established in recent years to delineate the molecular interaction of an RNA Binding Protein (RBP) and its target RNAs. However, functional dissection of the role of the RBP binding sites in modulating the post-transcriptional fate of the target RNA remains challenging. CRISPR/Cas9 genome editing system is being commonly employed to perturb both coding and noncoding regions in the genome. With the advancements in genome-scale CRISPR/Cas9 screens, it is now possible to not only perturb specific binding sites but also probe the global impact of protein-RNA interaction sites across cell types. Here, we present SliceIt (http://sliceit.soic.iupui.edu/), a database of in silico sgRNA (single guide RNA) library to facilitate conducting such high throughput screens. SliceIt comprises of ~4.8 million unique sgRNAs with an estimated range of 2-8 sgRNAs designed per RBP binding site, for eCLIP experiments of >100 RBPs in HepG2 and K562 cell lines from the ENCODE project. SliceIt provides a user friendly environment, developed using advanced search engine framework, Elasticsearch. It is available in both table and genome browser views facilitating the easy navigation of RBP binding sites, designed sgRNAs, exon expression levels across 53 human tissues along with prevalence of SNPs and GWAS hits on binding sites. Exon expression profiles enable examination of locus specific changes proximal to the binding sites. Users can also upload custom tracks of various file formats directly onto genome browser, to navigate additional genomic features in the genome and compare with other types of omics profiles. All the binding site-centric information is dynamically accessible via "search by gene", "search by coordinates" and "search by RBP" options and readily available to download. Validation of the sgRNA library in SliceIt was performed by selecting RBP binding sites in Lipt1 gene and designing sgRNAs. Effect of CRISPR/Cas9 perturbations on the selected binding sites in HepG2 cell line, was confirmed based on altered proximal exon expression levels using qPCR, further supporting the utility of the resource to design experiments for perturbing protein-RNA interaction networks. Thus, SliceIt provides a one-stop repertoire of guide RNA library to perturb RBP binding sites, along with several layers of functional information to design both low and high throughput CRISPR/Cas9 screens, for studying the phenotypes and diseases associated with RBP binding sites.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genômica/métodos , Genoma Humano/genética , Humanos , RNA Guia de Cinetoplastídeos/genética
3.
IEEE/ACM Trans Comput Biol Bioinform ; 15(4): 1259-1269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-26394433

RESUMO

Although some methods are proposed for automatic ontology generation, none of them address the issue of integrating large-scale heterogeneous biomedical ontologies. We propose a novel approach for integrating various types of ontologies efficiently and apply it to integrate International Classification of Diseases, Ninth Revision, Clinical Modification (ICD9CM), and Gene Ontologies. This approach is one of the early attempts to quantify the associations among clinical terms (e.g., ICD9 codes) based on their corresponding genomic relationships. We reconstructed a merged tree for a partial set of GO and ICD9 codes and measured the performance of this tree in terms of associations' relevance by comparing them with two well-known disease-gene datasets (i.e., MalaCards and Disease Ontology). Furthermore, we compared the genomic-based ICD9 associations to temporal relationships between them from electronic health records. Our analysis shows promising associations supported by both comparisons suggesting a high reliability. We also manually analyzed several significant associations and found promising support from literature.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Registros Eletrônicos de Saúde , Ontologia Genética , Técnicas de Genotipagem/métodos , Classificação Internacional de Doenças , Bases de Dados Genéticas , Humanos
4.
Cancer Res ; 77(14): 3733-3739, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28667076

RESUMO

Several adenosine or cytidine deaminase enzymes deaminate transcript sequences in a cell type or environment-dependent manner by a programmed process called RNA editing. RNA editing enzymes catalyze A>I or C>U transcript alterations and have the potential to change protein coding sequences. In this brief review, we highlight some recent work that shows aberrant patterns of RNA editing in cancer. Transcriptome sequencing studies reveal increased or decreased global RNA editing levels depending on the tumor type. Altered RNA editing in cancer cells may provide a selective advantage for tumor growth and resistance to apoptosis. RNA editing may promote cancer by dynamically recoding oncogenic genes, regulating oncogenic gene expression by noncoding RNA and miRNA editing, or by transcriptome scale changes in RNA editing levels that may affect innate immune signaling. Although RNA editing markedly increases complexity of the cancer cell transcriptomes, cancer-specific recoding RNA editing events have yet to be discovered. Epitranscriptomic changes by RNA editing in cancer represent a novel mechanism contributing to sequence diversity independently of DNA mutations. Therefore, RNA editing studies should complement genome sequence data to understand the full impact of nucleic acid sequence alterations in cancer. Cancer Res; 77(14); 3733-9. ©2017 AACR.


Assuntos
Neoplasias/genética , Edição de RNA , Animais , Humanos , Neoplasias/patologia
5.
Carcinogenesis ; 38(10): 966-975, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633434

RESUMO

Breast cancer (BC) is a highly heterogeneous disease, both at the pathological and molecular level, and several chromatin-associated proteins play crucial roles in BC initiation and progression. Here, we demonstrate the role of PSIP1 (PC4 and SF2 interacting protein)/p75 (LEDGF) in BC progression. PSIP1/p75, previously identified as a chromatin-adaptor protein, is found to be upregulated in basal-like/triple negative breast cancer (TNBC) patient samples and cell lines. Immunohistochemistry in tissue arrays showed elevated levels of PSIP1 in metastatic invasive ductal carcinoma. Survival data analyses revealed that the levels of PSIP1 showed a negative association with TNBC patient survival. Depletion of PSIP1/p75 significantly reduced the tumorigenicity and metastatic properties of TNBC cell lines while its over-expression promoted tumorigenicity. Further, gene expression studies revealed that PSIP1 regulates the expression of genes controlling cell-cycle progression, cell migration and invasion. Finally, by interacting with RNA polymerase II, PSIP1/p75 facilitates the association of RNA pol II to the promoter of cell cycle genes and thereby regulates their transcription. Our findings demonstrate an important role of PSIP1/p75 in TNBC tumorigenicity by promoting the expression of genes that control the cell cycle and tumor metastasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Cromatina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Oncogenes , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Análise Serial de Tecidos , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
6.
Cancer Inform ; 15(Suppl 2): 17-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27528797

RESUMO

Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients' clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing - a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis.

7.
Database (Oxford) ; 2015: bav072, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26210853

RESUMO

RNA Binding Protein (RBP) Expression and Disease Dynamics database (READ DB) is a non-redundant, curated database of human RBPs. RBPs curated from different experimental studies are reported with their annotation, tissue-wide RNA and protein expression levels, evolutionary conservation, disease associations, protein-protein interactions, microRNA predictions, their known RNA recognition sequence motifs as well as predicted binding targets and associated functional themes, providing a one stop portal for understanding the expression, evolutionary trajectories and disease dynamics of RBPs in the context of post-transcriptional regulatory networks.


Assuntos
Bases de Dados Genéticas , Evolução Molecular , Regulação da Expressão Gênica , MicroRNAs , Proteínas de Ligação a RNA , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética
8.
J Proteomics ; 127(Pt A): 61-70, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25982388

RESUMO

RNA binding proteins (RBPs) play a central role in mediating post transcriptional regulation of genes. However less is understood about them and their regulatory mechanisms. In this study, we construct a catalogue of 1344 experimentally confirmed RBPs. The domain architecture of RBPs enabled us to classify them into three groups - Classical (29%), Non-classical (19%) and unclassified (52%). A higher percentage of proteins with unclassified domains reveals the presence of various uncharacterised motifs that can potentially bind RNA. RBPs were found to be highly disordered compared to Non-RBPs (p<2.2e-16, Fisher's exact test), suggestive of a dynamic regulatory role of RBPs in cellular signalling and homeostasis. Evolutionary analysis in 62 different species showed that RBPs are highly conserved compared to Non-RBPs (p<2.2e-16, Wilcox-test), reflecting the conservation of various biological processes like mRNA splicing and ribosome biogenesis. The expression patterns of RBPs from human proteome map revealed that ~40% of them are ubiquitously expressed and ~60% are tissue-specific. RBPs were also seen to be highly associated with several neurological disorders, cancer and inflammatory diseases. Anatomical contexts like B cells, T-cells, foetal liver and foetal brain were found to be strongly enriched for RBPs, implying a prominent role of RBPs in immune responses and different developmental stages. The catalogue and meta-analysis presented here should form a foundation for furthering our understanding of RBPs and the cellular networks they control, in years to come. This article is part of a Special Issue entitled: Proteomics in India.


Assuntos
Proteínas de Neoplasias , Neoplasias , Doenças do Sistema Nervoso , Proteoma , Proteínas de Ligação a RNA , Humanos , Inflamação/genética , Inflamação/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-23221085

RESUMO

Reconstructing the topology of a signaling network by means of RNA interference (RNAi) technology is an underdetermined problem especially when a single gene in the network is knocked down or observed. In addition, the exponential search space limits the existing methods to small signaling networks of size 10-15 genes. In this paper, we propose integrating RNAi data with a reference physical interaction network. We formulate the problem of signaling network reconstruction as finding the minimum number of edit operations on a given reference network. The edit operations transform the reference network to a network that satisfies the RNAi observations. We show that using a reference network does not simplify the computational complexity of the problem. Therefore, we propose two methods which provide near optimal results and can scale well for reconstructing networks up to hundreds of components. We validate the proposed methods on synthetic and real data sets. Comparison with the state of the art on real signaling networks shows that the proposed methodology can scale better and generates biologically significant results.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Humanos , Mapas de Interação de Proteínas , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...