Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10350, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710819

RESUMO

Compared with conventional electrochemical supercapacitors and lithium-ion batteries, the novel amorphous cellulose nanofibre (ACF) supercapacitor demonstrates superior electric storage capacity with a high-power density, owing to its fast-charging capability and high-voltage performance. This study unveils introduces an ACF supercapacitor characterised by a substantial energy density. This is achieved by integrating a singular layer of pseudo-solid water molecules (electrical resistivity of 1.11 × 108 Ω cm) with cellulose nanofibers (CNFs), establishing forming an electric double layer at the electrode interface. The enhanced energy storage in these high-energy density capacitors (8.55 J/m2) is explicated through the polarisation of protons and lone pair electrons on oxygen atoms during water electrolysis, commencing at 1.23 V. Improvements in energy density are attainable through CNF density enhancements and charging-current optimisation. The proposed ACF supercapacitor offers substantial promise for integration into the power sources of flexible and renewable paper-based electronic devices.

2.
Sci Rep ; 14(1): 8692, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622278

RESUMO

Bio-semiconductors are expected to be similar to organic semiconductors; however, they have not been utilized in application yet. In this study, we show the origin of electron appearance, N- and S-type negative resistances, rectification, and switching effects of semiconductors with energy storage capacities of up to 418.5 mJ/m2 using granulated amorphous kenaf cellulose particles (AKCPs). The radical electrons in AKCP at 295 K appear in cellulose via the glycosidic bond C1-O1·-C4. Hall effect measurements indicate an n-type semiconductor with a carrier concentration of 9.89 × 1015/cm3, which corresponds to a mobility of 10.66 cm2/Vs and an electric resistivity of 9.80 × 102 Ωcm at 298 K. The conduction mechanism in the kenaf tissue was modelled from AC impedance curves. The light and flexible cellulose-semiconductors may open up new avenues in soft electronics such as switching effect devices and bio-sensors, primarily because they are composed of renewable natural compounds.

3.
Sci Rep ; 13(1): 16600, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789070

RESUMO

The performance of electric double-layer capacitors and lithium-ion batteries deteriorates with increasing humidity. The desirable effect of bound water on the energy-storage properties of physically dry cellulose nanofiber (Na-ACF) supercapacitors with sodium (Na) carboxylate radicals was investigated using infrared and near-infrared spectroscopy, and nuclear magnetic resonance spectroscopy, alternating current impedance analyses, and first-principles calculations. The storage capacity decreased gradually upon heating to 423 K and reached zero upon exceeding 483 K, accompanied by increasing electrical resistance, forming a distorted semicircle in Nyquist diagram and drawing the phase angle to zero in Bode diagram. This is attributed to the water in the hydration gel bound to the Na+-ions that cross-link the cellulose chains, evaporating as the temperature increases, and finally becoming Na2O. The increased band-gap energy from the increase in bound water prevents leakage from the supercapacitor. In contrast to ordinary batteries, bound water is necessary for developing Na-ACF supercapacitors.

4.
Materials (Basel) ; 16(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36837355

RESUMO

Carbon nanotubes (CNTs) exhibit high strength, Young's modulus, and flexibility and serve as an ideal reinforcement for composite materials. Owing to their toughness against bending and/or twisting, they are typically used as fabric composites. The conventional multiaxial braiding method lacks tension and resultant strength in the thickness direction. Some braiding patterns are proposed; however, they may have shortcomings in flexibility. Thus, this study proposed three types of braiding pattern for fabrics based on natural products such as spider net and honeycomb, in accordance with thickness-direction strength. The spider-net-based structure included wefts with spaces in the center with overlapping warps. At both sides, the warps crossed and contacted the wefts to impart solidness to the structure and enhance its strength as well as flexural stability. In addition, box-type wefts were proposed by unifying the weft and warps into boxes, which enhanced the stability and flexibility of the framework. Finally, we proposed a structure based on rectangular and hexagonal shapes mimicking the honeycomb. Moreover, finite element calculations were performed to investigate the mechanisms through which the proposed structures garnered strength and deformation ability. The average stress in fabrics becomes smaller than half (43%) when four edges are restrained and sliding is inserted. Under three-dimensional forces, our proposed structures underwent mechanisms of wrapping, warping, sliding and doubling, and partial locking to demonstrate their enhanced mechanical properties. Furthermore, we proposed a hierarchical structure specialized for CNTs, which could facilitate applications in structural components of satellites, wind turbines, and ships. The hierarchical structure utilizing discontinuity and sliding benefits the usage for practical mechanical systems.

5.
Sci Rep ; 12(1): 21899, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536081

RESUMO

There has been no research conducted thus far on the semiconducting behaviour of biomaterials. In this study, we present an n-type semiconducting biomaterial composed of amorphous kenaf cellulose fibre (AKCF) paper with a voltage-controlled N-type negative resistance. The AKCF generates an alternating-current wave with a frequency of 40.6 MHz from a direct-current voltage source at its threshold voltage (electric field of 5.26 kV/m), which is accompanied by a switching effect with a four-order resistance change at 293 K. This effect is attributed to the voltage-induced occurrence of strong field domains (electric double layers) at the cathode and depletion at the anode of the AKCF device. The proposed AKCF material presents considerable potential for applications in flexible/paper electronic devices such as high frequency power sources and switching effect devices.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Eletrodos , Eletrônica
6.
Sci Rep ; 12(1): 5619, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379886

RESUMO

The electric charge storage properties of amorphous cellulose nanofiber (ACF) supercapacitors with different metal carboxylate radicals (COOM; M: Na(I), Ca(II), Al(III)) was investigated in terms of charging/discharging behaviours, alternating current impedance analysis, and plane-wave-based first-principles density functional calculations. Na-ACF exhibited a higher storage effect than Ca- and Al-ACFs. The charge storage mechanism for an Na-ACF supercapacitor was proposed using an electric double layer model in a C12H17O11Na electrolyte with an electrical resistivity of 6.8 × 103 Ω cm, based on the migration of protonic soliton. The supercapacitor, which demonstrated fast charging upon voltage application, could illuminate a white LED for 7 s after charging with 10 mA at 18.5 V.

7.
J Prosthodont Res ; 66(2): 236-242, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34305087

RESUMO

PURPOSE: This study aims to confirm the usefulness of active acoustic emission (Active AE) for reproducible and non-invasive generation of physical external force which is required for conventional AE. METHODS: Experiment 1: A root dentin-resin adhesive interface was observed. The post space was filled with a dual-cure resin composite core material with and without adhesive. The vibration characteristics of the data obtained from the time-frequency analysis were evaluated. Experiment 2: A crown-abutment tooth adhesive interface was observed. Adhesive resin cement was used for luting the crown and adhesion states in the same specimen over time were analyzed with three measurements: at trial-fitting, immediately after luting, and 2 weeks after luting. Data were subjected to time-frequency analysis and relationships between amplitude (indicating loudness) and frequency (indicating the sound component) were analyzed. RESULTS: Experiment 1: Time-frequency analysis confirmed multiple peak frequencies for each specimen without adhesive and monomodal peak frequency in all specimens using adhesive. Experiment 2: Two weeks after luting, all specimens showed a single major peak except one which showed multiple weak peaks. The three-dimensional visualization of time-frequency analysis revealed one specimen with multiple weak peaks while all others displayed a single, low-amplitude band at 2 weeks after luting. CONCLUSION: The state of the adhesive interface can be evaluated using active AE. This basic technique may prove useful to evaluate changes in the adhesive interface of prostheses over time.


Assuntos
Colagem Dentária , Adesivos Dentinários , Acústica , Resinas Compostas , Cimentos Dentários , Dentina , Teste de Materiais , Cimentos de Resina , Estresse Mecânico , Propriedades de Superfície
8.
J Prosthodont Res ; 65(4): 438-442, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33980784

RESUMO

Purpose The state of adhesion between root dentin and a resin composite core material was inspected using acoustic emission (AE).Methods A total of 14 human incisors and premolars were used to prepare "no-adhesive group" and "adhesive group" specimens. For "adhesive group" specimens, a bonding agent was applied to root canal dentin. The entire post space was subsequently filled with a resin composite for both specimen groups. The prepared specimens were fixed onto a jig on which an AE sensor was installed. A zirconia ball was used for the impact test, and a vibration wave generated by the collision was measured by the system using an AE sensor. The obtained data were subjected to time-frequency analysis using analysis software (LabVIEW), and the relationship between the amplitude indicating the loudness and the frequency indicating the sound component was analyzed.Results Zirconia-ball collision tests using AE revealed differences between the groups with respect to the waveform of vibration waves transmitted to the root dentin through the root dentin-resin interface. The time-frequency analysis of the obtained data confirmed that multiple peaks were observed for each specimen in the no-adhesive group, whereas a single characteristic vibration peak was observed for all specimens in the adhesive group.Conclusions The state of the adhesive interface was successfully evaluated by AE. This demonstration is expected to lead to the development of a device that can detect problems at the bonding interface between the prostheses and tooth substances.


Assuntos
Colagem Dentária , Adesivos Dentinários , Acústica , Dentina , Humanos , Teste de Materiais , Cimentos de Resina
9.
Nanomaterials (Basel) ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808899

RESUMO

To apply carbon nanotubes (CNTs) as reinforcing agents in next-generation composites, it is essential to improve their nominal strength. However, since it is difficult to completely remove the defects, the synthesis guideline for improving nominal strength is still unclear, i.e., the effective strength and the number of nanotube layers required to improve the nominal strength has been undermined. In this study, molecular dynamics simulations were used to elucidate the effects of vacancies on the mechanical properties of CNTs. Additionally, the relationships between the number of layers and effective and nominal strengths of CNTs were discussed theoretically. The presence of extensive vacancies provides a possible explanation for the low nominal strengths obtained in previous experimental measurements of CNTs. This study indicates that the nominal strength can be increased from the experimentally obtained values of 10 GPa to approximately 20 GPa by using six to nine nanotube layers, even if the increase in effective strength of each layer is small. This has advantages over double-walled CNTs, because the effective strength of such CNTs must be approximately 60 GPa to achieve a nominal strength of 20 GPa.

10.
Sci Rep ; 11(1): 6436, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742038

RESUMO

Despite the intense interest in cellulose nanofibers (CNFs) for biomedical and engineering applications, no research findings about the electrical energy storage of CNF have been reported yet. Here, we present the first electroadsorption effects of an amorphous cellulose nanofiber (ACF) supercapacitor, which can store a large amount of electricity (221 mJm-2, 13.1 Wkg-1). The electric storage can be attributed to the entirely enhanced electroadsorption owing to a quantum-size effect by convexity of 17.9 nm, an offset effect caused by positive polar C6=O6 radicles, and an electrostatic effect by appearance of the localised electrons near the Na ions. The supercapacitor also captures both positive and negative electricity from the atmosphere and in vacuum. The supercapacitor could illuminate a red LED for 1 s after charging it with 2 mA at 10 V. Further gains might be attained by integrating CNF specimens with a nano-electromechanical system (NEMS).

11.
Sci Rep ; 11(1): 1699, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462366

RESUMO

In this study, the electric storage effect of AlO6 clusters in amorphous alumina (AAO) supercapacitors was investigated in terms of cluster morphologies under electron-beam irradiation. Based on first-principles density functional calculation, the optimised structure of AlO6 clusters around an O-vacancy is characterised by a large vacant space created by the absence of an O atom and its neighbouring Al atom. The localised electrons present near the two-atomic vacancies induce positive charges on the inside of the insulating oxide surface, ensuring the adsorption of many electrons on the surface. Electron-beam irradiation (adsorption) from 100 to 180 keV causes the lengths of the Al-O bonds of the cluster to shrink, but then return to the original length with decreasing voltage energy, indicating a rocking-chair-type charge-breathing effect accompanied by a volume expansion of approximately 4%. The I-V and I-R characteristics depicted Coulomb blockade for the switching effect of both the negative and positive potentials. The Ragone plot of the AAO supercapacitor is located at capability area of the second cell.

12.
Adv Sci (Weinh) ; 7(21): 2002225, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173744

RESUMO

Despite the ultrahigh intrinsic strength of multiwalled carbon nanotube (MWCNT), the strengthening effect on ceramic matrix composite remains far from expectation mainly due to the weak load transfer between the reinforcement and ceramic matrix. With the assistance of the in situ pullout test, it is revealed that the liquid-phase sintering (LPS) can serve as a novel strategy to achieve effective load transfer in MWCNT reinforced ceramic matrix composites. The YAlO3 formed liquid phase during spark plasma sintering of SiC composite greatly facilitates radical elastic deformation of MWCNT, leading to highly increased interfacial shear strength (IFSS) as well as interlayer shear resistance (ISR) of nested walls. The liquid phase with superior wettability can even penetrate into the defects of MWCNT, which further increases the ISR of MWCNT. Moreover, the first-principles calculation indicates that the oxygen terminated YAlO3 phase displays much stronger bonding compared with SiC matrix, which is also responsible for the large IFSS in the composite. As a result, as high as 30% improvement of bending strength is achieved in the composite with only 3 wt% MWCNT in comparison to the monolithic ceramic, manifesting the unprecedented strengthening effect of MWCNT assisted by LPS.

13.
ACS Appl Mater Interfaces ; 9(37): 31816-31824, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28849652

RESUMO

Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

14.
Nanotechnology ; 26(19): 195601, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25900535

RESUMO

In this paper, we develop a novel electroplating method for the synthesis of carbon nanotubes (CNTs)-nickel (Ni) nanocomposite, and present the fabrication of a silicon micromirror with the CNTs-Ni nanocomposite beams to evaluate the mechanical stability of the micromirror in terms of resonant frequency. CNTs are pretreated to have positive charges on their surface and added into a Ni electroplating solution to form a CNTs-Ni nanocomposite electroplating suspension. The weight fraction of the CNTs in the electroplated nanocomposite is 2.4 wt%, and the ultramicroindentation hardness is 18.6 GPa. The mechanical strengthening phenomenon is found in the nanocomposite in comparison with a Ni film. Moreover, the addition of CNTs in the nanocomposite beams effectively increases the shear modulus compared with the pure Ni. The maximum variation of the resonant frequency of the micromirror during a long-term stability test is approximately 0.25%, and its scanning angle is approximately 20°. It shows the potential suitability of the CNTs-Ni nanocomposite with proper design for micromechanical element applications.

15.
J Chem Phys ; 140(12): 121102, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697414

RESUMO

In this Communication, we use density functional theory (DFT) to examine the fracture properties of ceria (CeO2), which is a promising electrolyte material for lowering the working temperature of solid oxide fuel cells. We estimate the stress-strain curve by fitting the energy density calculated by DFT. The calculated Young's modulus of 221.8 GPa is of the same order as the experimental value, whereas the fracture strength of 22.7 GPa is two orders of magnitude larger than the experimental value. Next, we combine DFT and Griffith theory to estimate the fracture strength as a function of a crack length. This method produces an estimated fracture strength of 0.467 GPa, which is of the same order as the experimental value. Therefore, the fracture strength is very sensitive to the crack length, whereas the Young's modulus is not.

16.
ACS Appl Mater Interfaces ; 3(7): 2431-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21630639

RESUMO

We produced boron-mixed multi-walled carbon nanotube solids (B-mixed MWCNT solids) by heating and pressing the powder of purified MWCNTs mixed with 1, 5, and 10 wt % boron in the temperature range 1400-1800 °C every 200 °C under a constant pressure of 20 MPa in vacuo, and investigated the influence of boron addition on nanotube structure and the mechanical and electrical properties of the resulting B-mixed MWCNT solids. The structure of the prepared material was characterized by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy-electron energy loss spectroscopy, Raman scattering spectroscopy, and X-ray diffraction, and their mechanical properties and conductivity were measured using a mechanical and Vickers indentation tester and an electric resistor, respectively. It is notable that part of the nanotubes in the B-mixed MWCNT solids solidified at 1800 °C had dramatically changed into rod-like graphitic carbons (RLGCs). The occupancy distribution of RLGCs increased with increasing boron contents. However, boron was not detected in the energy-loss near-edge structure spectrum of RLGCs. Furthermore, RLGCs were not observed in the boron-unmixed sample treated with the same solidified condition, indicating that adding boron causes a remarkable ability to transform the phase of MWCNT. Transformation from MWCNTs to RLGCs resulted in increased specific bending strength and modulus, Vickers hardness, and electrical conductivity of B-mixed MWCNT solids with increasing boron content and solidified temperature.

17.
J Nanosci Nanotechnol ; 11(3): 2336-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449390

RESUMO

NiO-Ce0.8Sm0.2O1.9 (NiO-SDC) nanocomposite powders applied as promising anode material for low-temperature solid oxide fuel cells (SOFCs) were synthesized by hydroxide co-precipitation method using NH3 x H2O, NaOH and NH3 x H2O + NaOH as precipitation agents. The crystal phases, morphologies and sintering behavior of the synthesized NiO-SDC nanocomposite powders were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and sintering experiments. The effect of precipitation agents on the synthesis of the NiO-SDC nanocomposite powders was discussed. Results show that different precipitation agents influence greatly the synthesis and characteristics of the NiO-SDC nanocomposite powders. The NiO-SDC nanocomposite powders synthesized with NH3 x H2O deviate from the original composition due to the loss of Ni. The loss of Ni is avoided and nano-sized NiO-SDC composite powders are synthesized, when NaOH and NH3 x H2O + NaOH are used as precipitation agents. The NiO-SDC nanocomposite powders can be synthesized at relatively low temperature using NH3 x H2O + NaOH as precipitation agent, and the synthesized NiO-SDC nanocomposite powders show good sintering characteristics.


Assuntos
Cério/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Níquel/química , Precipitação Química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Pós , Propriedades de Superfície
18.
J Nanosci Nanotechnol ; 8(5): 2665-70, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18572704

RESUMO

Binder-free single-walled carbon nanotube (SWCNT) solids were evaluated for solid lubrication applications. The steady-state friction coefficients (mu) for the SWCNT solids were found to reach values as low as 0.22-0.24, according to unidirectional sliding friction tests using Si3N4 counterparts in air. The values were slightly higher than that of bulk graphite material (mu = 0.20). SEM and Raman analyses showed that most SWCNTs that existed in the friction surface transformed into SWCNT-derived transferred film made up of amorphous carbon during sliding. The resultant friction behavior may be related to the smearing of transferred film over the contact area, which was expected to permit easy shear and then help to achieve a lubricating effect during sliding.

19.
Environ Sci Technol ; 42(5): 1638-42, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18441814

RESUMO

There are a tremendous number of asbestos-containing buildings without any surveys on the presence of asbestos because of the difficulty to detect asbestos in building materials simply and quickly, although a great deal of worldwide effort was put into removing asbestos of which inhalation causes serious diseases. In this study, we newly developed a simple dyeing method to detect chrysotile asbestos, the most commonly used type of asbestos, in asbestos-cement composite materials using magnesium-chelating organic dyes. As an essential process for selective dyeing of chrysotile asbestos, special pretreatment with a calcium-chelating agent was developed to prevent the dyes from reacting with calcium, which is the major component of concrete materials. Our developed selective dyeing method was shown to possess sufficient sensitivity for detecting chrysotile asbestos in an amount greater than 0.1 mass% in concrete specimens, and there was an approximately linear relationship between the area fraction of dyed spots and the mass fraction of chrysotile asbestos. Our results may provide a basis for further development of a simple on-site detection method for chrysotile asbestos in building materials and may facilitate the progress of control and removal of asbestos in the environment.


Assuntos
Asbestos Serpentinas/análise , Corantes/química , Materiais de Construção , Microscopia Eletrônica de Varredura
20.
ACS Nano ; 2(2): 348-56, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206637

RESUMO

We produced large binder-free multi-walled carbon nanotube (MWNT) blocks from fluorinated MWNTs using thermal heating and a compressing method in vacuo. This technique resulted in the formation of covalent MWNT networks generated by the introduction of sp(3)-hybridized carbon atoms that cross-link between nanotubes upon de-fluorination. The resulting carbon nanotube blocks are lighter than graphite, can be machined and polished, and possess average bending strengths of 102.2 MPa, a bending modulus of 15.4 GPa, and an electrical conductivity of 2.1 x 10(2) S/cm. Although each nanotube exhibits a random structure in these blocks, the mechanical properties are 3 times higher than those obtained for commercial graphite. On the basis of theoretical molecular dynamics simulations, a model is presented for the nanotube interconnecting mechanism upon de-fluorination.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Flúor/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Reagentes de Ligações Cruzadas/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...