Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534871

RESUMO

The Artificial Electric Field Algorithm (AEFA) stands out as a physics-inspired metaheuristic, drawing inspiration from Coulomb's law and electrostatic force; however, while AEFA has demonstrated efficacy, it can face challenges such as convergence issues and suboptimal solutions, especially in high-dimensional problems. To overcome these challenges, this paper introduces a modified version of AEFA, named mAEFA, which leverages the capabilities of Lévy flights, simulated annealing, and the Adaptive s-best Mutation and Natural Survivor Method (NSM) mechanisms. While Lévy flights enhance exploration potential and simulated annealing improves search exploitation, the Adaptive s-best Mutation and Natural Survivor Method (NSM) mechanisms are employed to add more diversity. The integration of these mechanisms in AEFA aims to expand its search space, enhance exploration potential, avoid local optima, and achieve improved performance, robustness, and a more equitable equilibrium between local intensification and global diversification. In this study, a comprehensive assessment of mAEFA is carried out, employing a combination of quantitative and qualitative measures, on a diverse range of 29 intricate CEC'17 constraint benchmarks that exhibit different characteristics. The practical compatibility of the proposed mAEFA is evaluated on five engineering benchmark problems derived from the civil, mechanical, and industrial engineering domains. Results from the mAEFA algorithm are compared with those from seven recently introduced metaheuristic algorithms using widely adopted statistical metrics. The mAEFA algorithm outperforms the LCA algorithm in all 29 CEC'17 test functions with 100% superiority and shows better results than SAO, GOA, CHIO, PSO, GSA, and AEFA in 96.6%, 96.6%, 93.1%, 86.2%, 82.8%, and 58.6% of test cases, respectively. In three out of five engineering design problems, mAEFA outperforms all the compared algorithms, securing second place in the remaining two problems. Results across all optimization problems highlight the effectiveness and robustness of mAEFA compared to baseline metaheuristics. The suggested enhancements in AEFA have proven effective, establishing competitiveness in diverse optimization problems.

2.
Nat Prod Res ; : 1-5, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610160

RESUMO

Antimicrobial potential of Citrus medica var. sarcodactylis (Siebold ex Hoola van Nooten) Swingle and Limonia acidissima L. fruits and leaves extracts CMF, CML, LAF and LAL, respectively were evaluated. Gas chromatography-mass spectrometry (GC-MS) analysis for lipoidal matters revealed a high percentage of non-oxygenated compounds. Phytol was the major in LAL. Palmitic and linoleic acid were the major in CML and LAL, respectively. Rutin and P-hydroxy benzoic acid were the main compounds identified by High-performance liquid chromatography (HPLC) analysis. The antibacterial and antifungal activities of the plants extract were determined by the well diffusion method. Antimicrobial investigation for different successive fractions of active methanol extracts of CML, LAL, LAF and CMF showed the highest activity (CML), whereas the petroleum ether (CML PE) and MeOH (CML) fractions exhibit a significant antifungal activity against Candida albicans minimum inhibitory concentration (MIC) 12 and 15 µg/mL, respectively. The antifungal activity prevailed by C. medica leaves may be attributed to its polyphenolics (rutin, chlorogenic and rosmarinic acid) in addition to phenylated hydrocarbon.

3.
Soft comput ; : 1-29, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35574265

RESUMO

The rapid growth of data generated by several applications like engineering, biotechnology, energy, and others has become a crucial challenge in the high dimensional data mining. The large amounts of data, especially those with high dimensions, may contain many irrelevant, redundant, or noisy features, which may negatively affect the accuracy and efficiency of the industrial data mining process. Recently, several meta-heuristic optimization algorithms have been utilized to evolve feature selection techniques for dealing with the vast dimensionality problem. Despite optimization algorithms' ability to find the near-optimal feature subset of the search space, they still face some global optimization challenges. This paper proposes an improved version of the sooty tern optimization (ST) algorithm, namely the ST-AL method, to improve the search performance for high-dimensional industrial optimization problems. ST-AL method is developed by boosting the performance of STOA by applying four strategies. The first strategy is the use of a control randomization parameters that ensure the balance between the exploration-exploitation stages during the search process; moreover, it avoids falling into local optimums. The second strategy entails the creation of a new exploration phase based on the Ant lion (AL) algorithm. The third strategy is improving the STOA exploitation phase by modifying the main equation of position updating. Finally, the greedy selection is used to ignore the poor generated population and keeps it from diverging from the existing promising regions. To evaluate the performance of the proposed ST-AL algorithm, it has been employed as a global optimization method to discover the optimal value of ten CEC2020 benchmark functions. Also, it has been applied as a feature selection approach on 16 benchmark datasets in the UCI repository and compared with seven well-known optimization feature selection methods. The experimental results reveal the superiority of the proposed algorithm in avoiding local minima and increasing the convergence rate. The experimental result are compared with state-of-the-art algorithms, i.e., ALO, STOA, PSO, GWO, HHO, MFO, and MPA and found that the mean accuracy achieved is in range 0.94-1.00.

4.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214297

RESUMO

The increasing use of Internet of Things (IoT) applications in various aspects of our lives has created a huge amount of data. IoT applications often require the presence of many technologies such as cloud computing and fog computing, which have led to serious challenges to security. As a result of the use of these technologies, cyberattacks are also on the rise because current security methods are ineffective. Several artificial intelligence (AI)-based security solutions have been presented in recent years, including intrusion detection systems (IDS). Feature selection (FS) approaches are required for the development of intelligent analytic tools that need data pretreatment and machine-learning algorithm-performance enhancement. By reducing the number of selected features, FS aims to improve classification accuracy. This article presents a new FS method through boosting the performance of Gorilla Troops Optimizer (GTO) based on the algorithm for bird swarms (BSA). This BSA is used to boost performance exploitation of GTO in the newly developed GTO-BSA because it has a strong ability to find feasible regions with optimal solutions. As a result, the quality of the final output will increase, improving convergence. GTO-BSA's performance was evaluated using a variety of performance measures on four IoT-IDS datasets: NSL-KDD, CICIDS-2017, UNSW-NB15 and BoT-IoT. The results were compared to those of the original GTO, BSA, and several state-of-the-art techniques in the literature. According to the findings of the experiments, GTO-BSA had a better convergence rate and higher-quality solutions.


Assuntos
Internet das Coisas , Algoritmos , Inteligência Artificial , Computação em Nuvem , Aprendizado de Máquina
5.
Avicenna J Med Biotechnol ; 11(2): 130-148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057715

RESUMO

The DNA motif discovery is a primary step in many systems for studying gene function. Motif discovery plays a vital role in identification of Transcription Factor Binding Sites (TFBSs) that help in learning the mechanisms for regulation of gene expression. Over the past decades, different algorithms were used to design fast and accurate motif discovery tools. These algorithms are generally classified into consensus or probabilistic approaches that many of them are time-consuming and easily trapped in a local optimum. Nature-inspired algorithms and many of combinatorial algorithms are recently proposed to overcome these problems. This paper presents a general classification of motif discovery algorithms with new sub-categories that facilitate building a successful motif discovery algorithm. It also presents a summary of comparison between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...