Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423147

RESUMO

Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Poluentes Ambientais , Fenóis , Osmose , Nylons/química , Cafeína , Água/química
2.
Membranes (Basel) ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36295717

RESUMO

This paper presents a comprehensive study of the performance of a newly developed titania nanotube incorporated RO membrane for endocrine-disrupting compound (EDC) removal at a low concentration. EDCs are known as an emerging contaminant, and if these pollutants are not properly removed, they can enter the water cycle and reach the water supply for residential use, causing harm to human health. Reverse osmosis (RO) has been known as a promising technology to remove EDCs. However, there is a lack of consensus on their performance, especially on the feed concentrations of EDC that vary from one source to another. In this study, polyamide thin-film composite (PA TFC) membrane was incorporated with one-dimensional titania nanotube (TNT) to mitigate trade-off between water permeability and solute rejection of EDC. The characterization indicated that the membrane surface hydrophilicity has been greatly increased with the presence of TNT. Using bisphenol A (BPA) and caffeine as model EDC, the removal efficiencies of the pristine TFC and thin-film nanocomposite (TFN) membranes were evaluated. Compared to TFC membrane, the membrane modified with 0.01% of TNT exhibited improved permeability of 50% and 49% for BPA and caffeine, respectively. A satisfactory BPA rejection of 89.05% and a caffeine rejection of 97.89% were achieved by the TNT incorporated TFN membranes. Furthermore, the greater hydrophilicity and smoother surface of 0.01 TFN membrane led to lower membrane fouling tendency under long-term filtration.

3.
Chemosphere ; 305: 135151, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35654232

RESUMO

Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.


Assuntos
Nanocompostos , Purificação da Água , Filtração/métodos , Membranas Artificiais , Nanocompostos/química , Osmose , Purificação da Água/métodos
4.
Environ Monit Assess ; 189(11): 560, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29034408

RESUMO

This study investigates the presence and distribution of organochlorine pesticides in streams and the lake in the Sembrong Lake Basin in Malaysia. The catchment of Sembrong Lake has been converted to agricultural areas over the past 30 years, with oil palm plantations and modern agricultural farming being the main land use. Surface water samples were collected from eight sites comprising the stream and lake and analysed for 19 organochlorine pesticides (OCPs). In situ measurement of temperature, dissolved oxygen, pH and conductivity were also undertaken at each site. Aldrin, endrin, δ-BHC, 4,4-DDT, methoxychlor and endosulfan were the main OCPs detected in the lake basin. The total OCP concentration ranged between 5.42 and 349.2 ng/L. The most frequently detected OCPs were δ-BHC, heptachlor and aldrin. The maximum values detected were 23.0, 43.2 and 50.4 ng/L respectively. The highest concentration of OCPs was attributed to 4,4-DDT, but such high residue was rare and only detected once. Other OCP residues were low. Significant differences in the mean values were observed between lake and stream for dichlorodiphenyldichloroethylene (DDE) and α-endosulfan concentration (p < 0.05). The highest endosulfan, endrin and methoxychlor residues were found in lake sites, while the highest 4,4,-DDT residues were observed for the river sites. Temporal variation of OCP residues was observed for heptachlor and ß-endosulfan. The highest concentrations of pesticide residues were found in October. DDX and α/É£ ratios indicate possible fresh inputs of the OCP pesticide in the basin.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Lagos/química , Poluentes Químicos da Água/análise , Agricultura , Aldrina/análise , Diclorodifenil Dicloroetileno/análise , Endossulfano/análise , Heptacloro/análise , Malásia , Resíduos de Praguicidas/análise , Praguicidas/análise , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...