Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 266(1): 35-41, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11589575

RESUMO

Retrolycl, a Ty1/copia-like element, was originally isolated from the Lycopersicon peruvianum genome and shown to be present also in other Lycopersicon species. It shares extensive similarities with Tntl, except in its U3 regulatory region. In order to evaluate Retrolycl diversity, we analyzed partial sequences including both coding domains and the U3 regulatory region in four different species of the Lycopersicon genus. Two Retrolycl subfamilies defined by different U3 regions were identified. RetrolyclA is most abundant in L. peruvianum and L. hirsutum, while Retrolyc1B is distributed in all four species studied here. The RetrolyclA U3 region contains tandemly repeated elements of 53 bp. Transient expression analysis suggests that Retrolyc1A is a transcriptionally active family, and that the repeated motifs found in its U3 region are important transcriptional regulatory elements.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Retroelementos , Solanum lycopersicum/genética , Sequências Repetidas Terminais/genética , Sequência de Bases , DNA de Plantas , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
2.
Genetica ; 107(1-3): 65-72, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10952198

RESUMO

Retrotransposons are ubiquitous mobile genetic elements that transpose through an RNA intermediate. One of the best known plant retrotransposon, Tnt1, was isolated from tobacco and showed an extensive distribution in the Nicotiana genus. We investigated the presence of related sequences in the Lycopersicon genus, another member of the Solanaceae family. Hybridization experiments performed using Tnt1 probes indicated that homologous sequences were present in all Lycopersicon species, indicating that these Tnt1-related sequences, that we named Retrolyc1, are distributed throughout the Lycopersicon genus. Different distribution patterns were detected between species, demonstrating a potential use of Retrolyc1 elements as molecular markers. An incomplete Retrolyc1 sequence, that we named Retrolyc1-1, was isolated from an L. peruvianum genomic library. Retrolyc1-1 shows extensive homology with Tnt1 sequences except in the LTR U3 region. Since this region is known to be involved in the control of transcription, this strongly suggests the existence of different patterns of regulation for Tnt1 and Retrolyc1 elements. The study of these two elements within the Solanaceae family may provide interesting models for retrotransposon evolution within this group and transmission in host genomes.


Assuntos
Genoma de Planta , Retroelementos/genética , Solanum lycopersicum/genética , Sequência de Bases , Clonagem Molecular , DNA de Plantas , Dados de Sequência Molecular , Família Multigênica , Sequências Repetitivas de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico
3.
Genetica ; 107(1-3): 65-72, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16220396

RESUMO

Retrotransposons are ubiquitous mobile genetic elements that transpose through an RNA intermediate. One of the best known plant retrotransposon, Tnt1, was isolated from tobacco and showed an extensive distribution in the Nicotiana genus. We investigated the presence of related sequences in the Lycopersicon genus, another member of the Solanaceae family. Hybridization experiments performed using Tnt1 probes indicated that homologous sequences were present in all Lycopersicon species, indicating that these Tnt1-related sequences, that we named Retrolyc1, are distributed throughout the Lycopersicon genus. Different distribution patterns were detected between species, demonstrating a potential use of Retrolyc1 elements as molecular markers. An incomplete Retrolyc1 sequence, that we named Retrolyc1-1, was isolated from an L. peruvianum genomic library. Retrolyc1-1 shows extensive homology with Tnt1 sequences except in the LTR U3 region. Since this region is known to be involved in the control of transcription, this strongly suggests the existence of different patterns of regulation for Tnt1 and Retrolyc1 elements. The study of these two elements within the Solanaceae family may provide interesting models for retrotransposon evolution within this group and transmission in host genomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA