Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284404

RESUMO

Pattern formation originates during embryogenesis by a series of symmetry-breaking steps throughout an expanding cell lineage. In Drosophila, classic work has shown that segmentation in the embryo is established by morphogens within a syncytium, and the subsequent action of the gap, pair-rule, and segment polarity genes. This classic model however does not translate directly to species that lack a syncytium - such as Caenorhabditis elegans - where cell fate is specified by cell-autonomous cell lineage programs and their inter-signaling. Previous single-cell RNA-Seq studies in C. elegans have analyzed cells from a mixed suspension of cells from many embryos to study late differentiation stages, or individual early stage embryos to study early gene expression in the embryo. To study the intermediate stages of early and late gastrulation (28- to 102-cells stages) missed by these approaches, here we determine the transcriptomes of the 1- to 102-cell stage to identify 119 embryonic cell states during cell fate specification, including 'equivalence-group' cell identities. We find that gene expression programs are modular according to the sub-cell lineages, each establishing a set of stripes by combinations of transcription factor gene expression across the anterior-posterior axis. In particular, expression of the homeodomain genes establishes a comprehensive lineage-specific positioning system throughout the embryo beginning at the 28-cell stage. Moreover, we find that genes that segment the entire embryo in Drosophila have orthologs in C. elegans that exhibit sub-lineage-specific expression. These results suggest that the C. elegans embryo is patterned by a juxtaposition of distinct lineage-specific gene regulatory programs each with a unique encoding of cell location and fate. This use of homologous gene regulatory patterning codes suggests a deep homology of cell fate specification programs across diverse modes of development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Linhagem da Célula/genética , Drosophila/genética , Padronização Corporal/genética , Embrião não Mamífero/metabolismo
2.
BMC Genomics ; 25(1): 119, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281016

RESUMO

BACKGROUND: Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS: As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS: The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".


Assuntos
Rotíferos , Animais , Rotíferos/genética , Perfilação da Expressão Gênica , Transcriptoma , Proteínas/metabolismo , Sementes , Dormência de Plantas , Germinação/genética
3.
Cell Rep ; 43(2): 113698, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38265934

RESUMO

Congenital cytomegalovirus (cCMV) is the most common intrauterine infection, leading to infant neurodevelopmental disabilities. An improved knowledge of correlates of protection against cCMV is needed to guide prevention strategies. Here, we employ an ex vivo model of human CMV (HCMV) infection in decidual tissues of women with and without preconception immunity against CMV, recapitulating nonprimary vs. primary infection at the authentic maternofetal transmission site. We show that decidual tissues of women with preconception immunity against CMV exhibit intrinsic resistance to HCMV, mounting a rapid activation of tissue-resident memory CD8+ and CD4+ T cells upon HCMV reinfection. We further reveal the role of HCMV-specific decidual-tissue-resident CD8+ T cells in local protection against nonprimary HCMV infection. The findings could inform the development of a vaccine against cCMV and provide insights for further studies of the integrity of immune defense against HCMV and other pathogens at the human maternal-fetal interface.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Lactente , Humanos , Feminino , Linfócitos T CD8-Positivos , Células T de Memória , Feto
4.
Cell Rep ; 35(9): 109198, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077720

RESUMO

Embryonic stem cell (ESC) self-renewal and cell fate decisions are driven by a broad array of molecular signals. While transcriptional regulators have been extensively studied in human ESCs (hESCs), the extent to which RNA-binding proteins (RBPs) contribute to human pluripotency remains unclear. Here, we carry out a proteome-wide screen and identify 810 proteins that bind RNA in hESCs. We reveal that RBPs are preferentially expressed in hESCs and dynamically regulated during early stem cell differentiation. Notably, many RBPs are affected by knockdown of OCT4, a master regulator of pluripotency, several dozen of which are directly targeted by this factor. Using cross-linking and immunoprecipitation (CLIP-seq), we find that the pluripotency-associated STAT3 and OCT4 transcription factors interact with RNA in hESCs and confirm the binding of STAT3 to the conserved NORAD long-noncoding RNA. Our findings indicate that RBPs have a more widespread role in human pluripotency than previously appreciated.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular/genética , Linhagem Celular , DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Fator de Transcrição STAT3/metabolismo
5.
Nucleic Acids Res ; 48(11): 5926-5938, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421815

RESUMO

Alternative polyadenylation (APA) produces isoforms with distinct 3'-ends, yet their functional differences remain largely unknown. Here, we introduce the APA-seq method to detect the expression levels of APA isoforms from 3'-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. We detected the expression levels of APA isoforms in individual Caenorhabditis elegans embryos at different stages throughout embryogenesis. Examining the correlation between the temporal profiles of isoforms led us to distinguish two classes of genes: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. We hypothesized that variants with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3' UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3' UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.


Assuntos
Regiões 3' não Traduzidas/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Poli A/análise , Poliadenilação , Animais , Drosophila melanogaster , Desenvolvimento Embrionário/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Xenopus laevis
6.
Clin Infect Dis ; 71(16): 2073-2078, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358960

RESUMO

BACKGROUND: The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to a current pandemic of unprecedented scale. Although diagnostic tests are fundamental to the ability to detect and respond, overwhelmed healthcare systems are already experiencing shortages of reagents associated with this test, calling for a lean immediately applicable protocol. METHODS: RNA extracts of positive samples were tested for the presence of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction, alone or in pools of different sizes (2-, 4-, 8-, 16-, 32-, and 64-sample pools) with negative samples. Transport media of additional 3 positive samples were also tested when mixed with transport media of negative samples in pools of 8. RESULTS: A single positive sample can be detected in pools of up to 32 samples, using the standard kits and protocols, with an estimated false negative rate of 10%. Detection of positive samples diluted in even up to 64 samples may also be attainable, although this may require additional amplification cycles. Single positive samples can be detected when pooling either after or prior to RNA extraction. CONCLUSIONS: As it uses the standard protocols, reagents, and equipment, this pooling method can be applied immediately in current clinical testing laboratories. We hope that such implementation of a pool test for coronavirus disease 2019 would allow expanding current screening capacities, thereby enabling the expansion of detection in the community, as well as in close organic groups, such as hospital departments, army units, or factory shifts.


Assuntos
COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , COVID-19/virologia , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
8.
Methods Mol Biol ; 1979: 45-56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028631

RESUMO

Single-cell RNA sequencing has revolutionized the way we look at cell populations. Of the methods available, CEL-Seq was the first to use linear RNA amplification. With early barcoding and 3' sequencing, it is sensitive, cost-effective and easy to perform. Here we describe a protocol for performing CEL-Seq2 on sorted cells, which can be performed without any special equipment.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Sequência de Bases , DNA Complementar/genética , Citometria de Fluxo , Perfilação da Expressão Gênica/economia , Biblioteca Gênica , Humanos , Técnicas de Amplificação de Ácido Nucleico/economia , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência de RNA/economia , Análise de Célula Única/economia
9.
Genetics ; 210(2): 587-605, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093412

RESUMO

Developmental programs are executed by tightly controlled gene regulatory pathways. Here, we combined the unique sample retrieval capacity afforded by laser capture microscopy with analysis of mRNA abundance by CEL-Seq (cell expression by linear amplification and sequencing) to generate a spatiotemporal gene expression map of the Caenorhabditis elegans syncytial germline from adult hermaphrodites and males. We found that over 6000 genes exhibit spatiotemporally dynamic expression patterns throughout the hermaphrodite germline, with two dominant groups of genes exhibiting reciprocal shifts in expression at late pachytene during meiotic prophase I. We found a strong correlation between restricted spatiotemporal expression and known developmental and cellular processes, indicating that these gene expression changes may be an important driver of germ cell progression. Analysis of the male gonad revealed a shift in gene expression at early pachytene and upregulation of subsets of genes following the meiotic divisions, specifically in early and late spermatids, mostly transcribed from the X chromosome. We observed that while the X chromosome is silenced throughout the first half of the gonad, some genes escape this control and are highly expressed throughout the germline. Although we found a strong correlation between the expression of genes corresponding to CSR-1-interacting 22G-RNAs during germ cell progression, we also found that a large fraction of genes may bypass the need for CSR-1-mediated germline licensing. Taken together, these findings suggest the existence of mechanisms that enable a shift in gene expression during prophase I to promote germ cell progression.


Assuntos
Gametogênese , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Células Germinativas/citologia , Meiose , Cromossomo X/genética , Inativação do Cromossomo X
10.
Proc Natl Acad Sci U S A ; 115(17): 4459-4464, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626130

RESUMO

The evolution of development has been studied through the lens of gene regulation by examining either closely related species or extremely distant animals of different phyla. In nematodes, detailed cell- and stage-specific expression analyses are focused on the model Caenorhabditis elegans, in part leading to the view that the developmental expression of gene cascades in this species is archetypic for the phylum. Here, we compared two species of an intermediate evolutionary distance: the nematodes C. elegans (clade V) and Acrobeloides nanus (clade IV). To examine A. nanus molecularly, we sequenced its genome and identified the expression profiles of all genes throughout embryogenesis. In comparison with C. elegans, A. nanus exhibits a much slower embryonic development and has a capacity for regulative compensation of missing early cells. We detected conserved stages between these species at the transcriptome level, as well as a prominent middevelopmental transition, at which point the two species converge in terms of their gene expression. Interestingly, we found that genes originating at the dawn of the Ecdysozoa supergroup show the least expression divergence between these two species. This led us to detect a correlation between the time of expression of a gene and its phylogenetic age: evolutionarily ancient and young genes are enriched for expression in early and late embryogenesis, respectively, whereas Ecdysozoa-specific genes are enriched for expression during the middevelopmental transition. Our results characterize the developmental constraints operating on each individual embryo in terms of developmental stages and genetic evolutionary history.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Filogenia , Rabditídios/embriologia , Transcriptoma/fisiologia , Animais , Rabditídios/classificação , Rabditídios/genética
11.
Nat Ecol Evol ; 1(10): 1429-1430, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29185522
12.
Genome Biol ; 18(1): 200, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29073931

RESUMO

The interaction between a pathogen and a host is a highly dynamic process in which both agents activate complex programs. Here, we introduce a single-cell RNA-sequencing method, scDual-Seq, that simultaneously captures both host and pathogen transcriptomes. We use it to study the process of infection of individual mouse macrophages with the intracellular pathogen Salmonella typhimurium. Among the infected macrophages, we find three subpopulations and we show evidence for a linear progression through these subpopulations, supporting a model in which these three states correspond to consecutive stages of infection.


Assuntos
Perfilação da Expressão Gênica/métodos , Macrófagos/metabolismo , Macrófagos/microbiologia , Salmonella typhimurium/genética , Análise de Sequência de RNA/métodos , Animais , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única
13.
Genome Biol ; 17: 77, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121950

RESUMO

Single-cell transcriptomics requires a method that is sensitive, accurate, and reproducible. Here, we present CEL-Seq2, a modified version of our CEL-Seq method, with threefold higher sensitivity, lower costs, and less hands-on time. We implemented CEL-Seq2 on Fluidigm's C1 system, providing its first single-cell, on-chip barcoding method, and we detected gene expression changes accompanying the progression through the cell cycle in mouse fibroblast cells. We also compare with Smart-Seq to demonstrate CEL-Seq2's increased sensitivity relative to other available methods. Collectively, the improvements make CEL-Seq2 uniquely suited to single-cell RNA-Seq analysis in terms of economics, resolution, and ease of use.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Ciclo Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Sensibilidade e Especificidade
14.
Nature ; 531(7596): 637-641, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26886793

RESUMO

Animals are grouped into ~35 'phyla' based upon the notion of distinct body plans. Morphological and molecular analyses have revealed that a stage in the middle of development--known as the phylotypic period--is conserved among species within some phyla. Although these analyses provide evidence for their existence, phyla have also been criticized as lacking an objective definition, and consequently based on arbitrary groupings of animals. Here we compare the developmental transcriptomes of ten species, each annotated to a different phylum, with a wide range of life histories and embryonic forms. We find that in all ten species, development comprises the coupling of early and late phases of conserved gene expression. These phases are linked by a divergent 'mid-developmental transition' that uses species-specific suites of signalling pathways and transcription factors. This mid-developmental transition overlaps with the phylotypic period that has been defined previously for three of the ten phyla, suggesting that transcriptional circuits and signalling mechanisms active during this transition are crucial for defining the phyletic body plan and that the mid-developmental transition may be used to define phylotypic periods in other phyla. Placing these observations alongside the reported conservation of mid-development within phyla, we propose that a phylum may be defined as a collection of species whose gene expression at the mid-developmental transition is both highly conserved among them, yet divergent relative to other species.


Assuntos
Padronização Corporal , Desenvolvimento Embrionário , Filogenia , Animais , Padronização Corporal/genética , Sequência Conservada/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes Controladores do Desenvolvimento/genética , Modelos Biológicos , Fenótipo , Especificidade da Espécie , Transcriptoma/genética
15.
Nature ; 519(7542): 219-22, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25487147

RESUMO

The concept of germ layers has been one of the foremost organizing principles in developmental biology, classification, systematics and evolution for 150 years (refs 1 - 3). Of the three germ layers, the mesoderm is found in bilaterian animals but is absent in species in the phyla Cnidaria and Ctenophora, which has been taken as evidence that the mesoderm was the final germ layer to evolve. The origin of the ectoderm and endoderm germ layers, however, remains unclear, with models supporting the antecedence of each as well as a simultaneous origin. Here we determine the temporal and spatial components of gene expression spanning embryonic development for all Caenorhabditis elegans genes and use it to determine the evolutionary ages of the germ layers. The gene expression program of the mesoderm is induced after those of the ectoderm and endoderm, thus making it the last germ layer both to evolve and to develop. Strikingly, the C. elegans endoderm and ectoderm expression programs do not co-induce; rather the endoderm activates earlier, and this is also observed in the expression of endoderm orthologues during the embryology of the frog Xenopus tropicalis, the sea anemone Nematostella vectensis and the sponge Amphimedon queenslandica. Querying the phylogenetic ages of specifically expressed genes reveals that the endoderm comprises older genes. Taken together, we propose that the endoderm program dates back to the origin of multicellularity, whereas the ectoderm originated as a secondary germ layer freed from ancestral feeding functions.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Endoderma/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/genética , Análise Espaço-Temporal , Transcriptoma/genética , Animais , Caenorhabditis elegans/citologia , Linhagem da Célula , Ingestão de Alimentos , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Endoderma/citologia , Endoderma/embriologia , Perfilação da Expressão Gênica , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Poríferos/citologia , Poríferos/embriologia , Poríferos/genética , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/genética , Fatores de Tempo , Xenopus/embriologia , Xenopus/genética
16.
Genome Biol ; 15(3): 110, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25000927

RESUMO

New methods employ RNA-seq to study single cells within complex tissues by in situ sequencing or mRNA capture from single photoactivated cells.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hipocampo/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Humanos
17.
PLoS One ; 8(12): e85088, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358376

RESUMO

In budding yeasts, the histone deacetylase Rpd3 resides in two different complexes called Rpd3L (large) and Rpd3S (small) that exert opposing effects on the transcription of meiosis-specific genes. By introducing mutations that disrupt the integrity and function of either Rpd3L or Rpd3S, we show here that Rpd3 function is determined by its association with either of these complexes. Specifically, the catalytic activity of Rpd3S activates the transcription of the two major positive regulators of meiosis, IME1 and IME2, under all growth conditions and activates the transcription of NDT80 only during vegetative growth. In contrast, the effects of Rpd3L depends on nutrients; it represses or activates transcription in the presence or absence of a nitrogen source, respectively. Further, we show that transcriptional activation does not correlate with histone H4 deacetylation, suggesting an effect on a nonhistone protein. Comparison of rpd3-null and catalytic-site point mutants revealed an inhibitory activity that is independent of either the catalytic activity of Rpd3 or the integrity of Rpd3L and Rpd3S.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transcrição Gênica , Acetilação , Carbono/metabolismo , Deleção de Genes , Expressão Gênica , Genes Reporter , Histonas/metabolismo , Meiose , Ligação Proteica , Ativação Transcricional
18.
Cell Rep ; 2(3): 666-73, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22939981

RESUMO

High-throughput sequencing has allowed for unprecedented detail in gene expression analyses, yet its efficient application to single cells is challenged by the small starting amounts of RNA. We have developed CEL-Seq, a method for overcoming this limitation by barcoding and pooling samples before linearly amplifying mRNA with the use of one round of in vitro transcription. We show that CEL-Seq gives more reproducible, linear, and sensitive results than a PCR-based amplification method. We demonstrate the power of this method by studying early C. elegans embryonic development at single-cell resolution. Differential distribution of transcripts between sister cells is seen as early as the two-cell stage embryo, and zygotic expression in the somatic cell lineages is enriched for transcription factors. The robust transcriptome quantifications enabled by CEL-Seq will be useful for transcriptomic analyses of complex tissues containing populations of diverse cell types.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de DNA/métodos , Animais , Caenorhabditis elegans , Regulação da Expressão Gênica/fisiologia , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
19.
Mol Syst Biol ; 8: 587, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22669615

RESUMO

The phenotype of an organism is determined by its genotype and environment. An interaction between these two arises from the differential effect of the environment on gene expression in distinct genotypes; however, the genomic properties identifying these are not well understood. Here we analyze the transcriptomes of five C. elegans strains (genotype) cultivated in five growth conditions (environment), and find that highly regulated genes, as distinguished by intergenic lengths, motif concentration, and expression levels, are particularly biased toward genotype-environment interactions. Sequencing these strains, we find that genes with expression variation across genotypes are enriched for promoter single-nucleotide polymorphisms (SNPs), as expected. However, genes with genotype-environment interactions do not significantly differ from background in terms of their promoter SNPs. Collectively, these results indicate that the highly regulated nature of particular genes predispose them for exhibiting genotype-environment interaction as a consequence of changes to upstream regulators. This observation may provide a deeper understanding into the origin of the extraordinary gene expression diversity present in even closely related species.


Assuntos
Caenorhabditis elegans/genética , Interação Gene-Ambiente , Regiões Promotoras Genéticas , Animais , Regulação da Expressão Gênica , Genômica/métodos , Genótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma
20.
Dev Cell ; 22(5): 1101-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22560298

RESUMO

A fundamental question in developmental biology relates to the connection between morphological stages and their underlying molecular activity. Here we demonstrate that, at the molecular level, embryonic development in five Caenorhabditis species proceeds through two distinct milestones in which the transcriptome is resistant to differences in species-specific developmental timings. By comparing the complete protein-coding transcriptomes of individually timed embryos across ten morphological markers, we found that developmental milestones can be characterized by their expression dynamics and activation of key developmental regulators. This approach led us to discover the nematode phylotypic stage and to show that in chordates and arthropods it is represented as two distinct stages, suggesting that animal body plans might evolve by uncoupling and elaboration on formerly synchronous processes.


Assuntos
Caenorhabditis/embriologia , Caenorhabditis/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Transcriptoma/fisiologia , Animais , Artrópodes , Cordados , Sequência Conservada , Filogenia , Interferência de RNA , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...